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“The Tree of Life”

Fundamental science:
Molecular biology,
Genetics, Ecology,
Behavior, etc.

Applications: Drug
design, Forensics,
Human migrations,
etc.







Estimating evolutionary trees



Easy cases: use morphology



DNA Sequence Evolution
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Harder problems!



Harder problems need DNA!
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Many, Many Trees
# of Species # of Unrooted

Trees
4 3
5 15
6 105
7 945
8 10,395
9 135,135

10 2,027,025
20 2.2 x 10
100 4.5 x 10x

1000 2.7 x 10 x

20

190

2900

(2n-5)!

2   (n-1)!n-1

Optimization
problems are

NP-Hard



8+ million species
NP-hard problems



Today (this lecture)

• What is a computational problem?
• What is an algorithm?
• How to design and analyze algorithms
• What NP-hardness means (and what to

do about it)
• My research (phylogeny estimation)



Some computational problems
1. Given a list of numbers, put it into sorted order
2. Given a map and a collection of cities, find the

shortest tour that visits every city
3. Given a collection of people, find the largest subset

of them that all know each other
4. Given a collection of people, find the smallest

number of groups so that no two people in the
same group know each other.
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Sorting

• Given a list of n numbers, put it into
sorted order

• Algorithm: find smallest number, and
put it in the front of the list.  Repeat the
process on the last n-1 numbers.

• Running time: O(n2) (polynomial time)
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Is this problem polynomial?
Problem: Given a collection of people, determine if they can be put

into 2 groups so that no two people in the same group know
each other

Graph-theoretic representation: Create a graph with vertices for
the people, and edges between vertices if the two people
know each other!

Mary

Sue

Tom
Henry

Carol



2-coloring
• 2-colorability: Given graph G = (V,E), determine if we

can assign colors red and blue to the vertices of G so
that no edge connects vertices of the same color.

• Greedy Algorithm.  Start with one vertex and make it red,
and then make all its neighbors blue, and keep going.  If
you succeed in coloring the graph without making two
nodes of the same color adjacent, the graph can be 2-
colored.

• Running time:  O(n+m) time, where n is the number of
vertices and m is the number of edges.
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2-coloring
• 2-colorability: Given graph G = (V,E), determine if we

can assign colors red and blue to the vertices of G so
that no edge connects vertices of the same color.

• Greedy Algorithm.  Start with one vertex and make it red,
and then make all its neighbors blue, and keep going.  If
you succeed in coloring the graph without making two
nodes of the same color adjacent, the graph can be 2-
colored.

• Running time:  O(n2) time, where n is the number of
vertices.



Can we group this set into two groups so that
no two people know each other?

Or Can we 2-color the graph?
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Can we group this set into two groups so that
no two people know each other?

Or Can we 2-color the graph?
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No! We cannot!



What about this?

• 3-colorability: Given graph G,
determine if we can assign red, blue,
and green to the vertices in G so that
no edge connects vertices of the same
color.



What about this?

• 3-colorability: Given graph G, determine if
we can assign red, blue, and green to the
vertices in G so that no edge connects
vertices of the same color.

A brute-force solution seems to require O(3n)
time, where n is the number of vertices.



• Some decision problems can be solved
in polynomial time:
– Can graph G be 2-colored?

• Some decision problems seem to not
be solvable in polynomial time:
– Can graph G be 3-colored?
– Does graph G have a Hamiltonian cycle (a

cycle that visits every vertex exactly once)?



In fact, some problems are
“NP-hard”

• 3-colorability: Given graph G,
determine if we can assign red, blue,
and green to the vertices in G so that
no edge connects vertices of the same
color.

• 3- colorability is provably NP-hard.
What does this mean?



Most computer scientists are willing to bet that
no NP-hard problem can be solved in
polynomial time.

Therefore, the options are:
– Solve the problem exactly (but use lots of time on

some inputs)
– Use heuristics which may not solve the problem

correctly (and which might be computationally
expensive, anyway)



Computational problems in Biology are
almost always NP-hard!

In particular, inferring evolutionary trees
generally involves trying to solve NP-
hard problems.



 My research

Methods that produce accurate
phylogenetic trees

on hard-to-analyze datasets
 (thousands of sequences)
within reasonable times

Problem: all the “good” methods require finding “good”
solutions to NP-hard optimization problems!



Maximum Parsimony

• Given a set of DNA sequences
• Find a tree for the sequences with the

minimum total number of changes



Maximum parsimony (example)

• Input: Four sequences
– ACT
– ACA
– GTT
– GTA

• Question: which of the three trees has the
best MP scores?



Maximum Parsimony

ACT

GTT ACA

GTA ACA ACT

GTAGTT

ACT

ACA
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GTA



Maximum Parsimony

ACT

GTT

GTT GTA

ACA

GTA

1
2

2

MP score = 5

ACA ACT

GTAGTT

ACA ACT
3 1 3

MP score = 7

ACT

ACA

GTT

GTA
ACA GTA
1 2 1

MP score = 4

Optimal MP tree



Maximum Parsimony

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be computed in polynomial 
time using Dynamic Programming



Solving NP-hard problems
exactly is … unlikely

• The number
of (unrooted)
binary trees
on n leaves is
(2n-5)!!

4.5 x 10190100
2.2 x 102020

2.7 x 1029001000

202702510
1351359
103958

9457
1056
155
34

#trees#leaves



Problems with techniques for MP and ML
Shown here is the performance of a TNT heuristic maximum parsimony analysis on a
real dataset of almost 14,000 sequences. (“Optimal” here means best score to date,
using any method for any amount of time.)  Acceptable error is below 0.01%.

Performance of TNT with time



Research: we try to develop better heuristics

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset
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Other problems I study

• Multiple sequence alignment
• Detecting Horizontal Gene Transfers (and

hybrid species)
• Whole genome evolution
• Evolution of languages and human origins

And more!



 Possible Indo-European tree
(Ringe, Warnow and Taylor

2000)



Possible IE Phylogenetic
Network

(Nakhleh et al. 2005)



Computational biology research is
fun, multi-disciplinary, and

collaborative!

• Software development
• Mathematics
• Probability and Statistics
• Biology
• Chemistry
• Linguistics

Plus, you will get to travel to far away lands



My research group

• Tandy Warnow (UT-Austin)
• Randy Linder (UT-Austin)
• UT PhD Students: Serita Nelesen, Kevin Liu, Sindhu Raghavan, Shel

Swenson
• Collaborators at many other universities around the world


