

Game Playing and Al Games are well-defined problems that are generally interpreted as requiring intelligence to play well. Introduces uncertainty since opponents moves can not be determined in advance. • Search spaces can be very large. For chess: -Branching factor: 35 -Depth: 50 moves each player -Search tree: 35¹⁰⁰ nodes (~10⁴⁰ legal positions) • Despite this, human players do quite well without doing much explicit search. They seem to rely on remembering many patterns. • Good test domain for search methods and development of pruning methods that ignore portions of the search tree that do not affect the outcome.

2

Game Playing Problem

- Instance of the general search problem.
- States where the game has ended are called **terminal states**.
- A utility (payoff) function determines the value of terminal states, e.g. win=+1, draw=0, lose=-1.
- In two-player games, assume one is called **MAX** (tries to maximize utility) and one is called **MIN** (tries to minimize utility).
- In the search tree, first layer is move by MAX, next layer by MIN, and alternate to terminal states.
- Each layer in the search is called a ply.

Minimax Algorithm

- General method for determining optimal move.
- Generate complete game tree down to terminal states.
- Compute utility of each node bottom up from leaves toward root.
- At each MAX node, pick the move with maximum utility.
- At each MIN node, pick the move with minimum utility (assumes opponent always acts correctly to minimize utility).
- When reach the root, optimal move is determined.

Imperfect Decisions

5

- Generating the complete game tree for all but the simplest games is intractable.
- Instead, cut off search at some nodes and estimate expected utility using a heuristic evaluation function.
- Ideally, a heuristic measures the probability that MAX will win given a position characterized by a given set of features.
- Sample chess evaluation function based on "material advantage:" pawn=1, knight/bishop=3, rook=5, queen=9
- An example of a weighted linear function:

$$w_1f_1 + w_2f_2 + \ldots + w_nf_n$$

Determining Cutoff Search to a uniform depth (ply) d. • Use iterative deepening to continue search to deeper levels until time runs out (anytime algorithm). • Could end in states that are very dynamic (not quiesent) in which evaluation could change quickly, as in (d) below. 1 ŧ Ġ 요 요 Ъĝ G I 르 ŧ 8 9 Ĥ <u>81</u> Ŷ (c) White to move Black winning (d) Black to move White about to lose

Determining Cutoff (cont)

- Continue **quiescence search** at dynamic states to improve utility estimate.
- Horizon problem: Inevitable problems can be pushed over the search boundary.
- Example: Delay inevitable queening move by pawn by exploring checking moves.

9

- Frequently, large parts of the search space are irrelevant to the final decision and can be **pruned**.
- No need to explore options that are already definitely worse than the current best option.

10

Alpha-Beta Algorithm	
Alpha-Deta Algorithm	
Function MAX-VALUE(<i>state</i> , <i>game</i> , α , β	3) returns the minimax value of <i>state</i>
inputs: state, current state in game	
game, game description	
α , the best score for MAX al	ong the path to state
β , the best score for MIN alo	ong the path to state
if CUTOFF-TEST(state) then return I	EVAL(<i>state</i>)
for each s in SUCCESSORS(state) do	
$\alpha \leftarrow Max(\alpha, MIN-VALUE(s, gam))$	$e, \alpha, \beta))$
if $\alpha \geq \beta$ then return β	
end	
return α	
function MIN-VALUE(state, game, α , β) returns the minimax value of <i>state</i>
if CUTOFF-TEST(state) then return I	EVAL(state)
for each s in SUCCESSORS(state) do	* *
$\beta \leftarrow MIN(\beta, MAX-VALUE(s, gam))$	$(a, \alpha, \beta))$
if $\beta < \alpha$ then return α	
_	

end return β

Effectiveness of Alpha-Beta

• Amount of pruning depends on the order in which siblings are explored.

 In optimal case where the best options are explored first, time complexity reduces from O(b^d) to O(b^{d/2}), a dramatic improvement. But entails knowledge of best move in advance!

- With successors randomly ordered, assymptotic bound is $O((b/logb)^d)$ which is not much help but only accurate for b>1000. More realistic expectation is something like $O(b^{3d/4})$.
- Fairly simple ordering heuristic can produce closer to optimal results than random results (e.g. check captures & threats first).
- Theoretical analysis makes unrealistic assumptions such as utility values distributed randomly across leaves and therefore experimental results are necessary.

State of the Art Game Programs

- Chess: DeepBlue beat world champion
 - -Customized parallel hardware
 - -Highly-tuned evaluation function developed with expert
 - -Comprehensive opening and end-game databases
- Checkers:
 - -Samuel's learning program eventually beat developer.
 - -Chinook is world champion, previous champ held title for 40 years had to withdraw for health reasons.
- Othello: Programs best players (e.g. lago).
- Backgammon: Neural-net learning program TDGammon one of world's top 3 players.
- Go: Branching factor of ~360 kills most search methods. Best programs still mediocre.

13

17