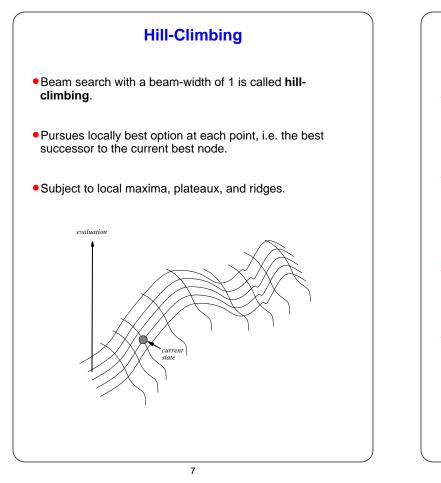
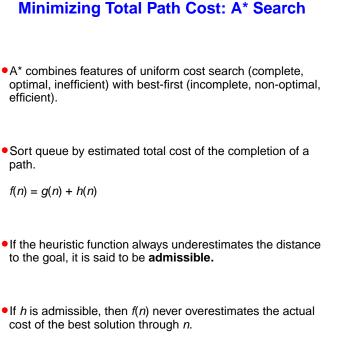
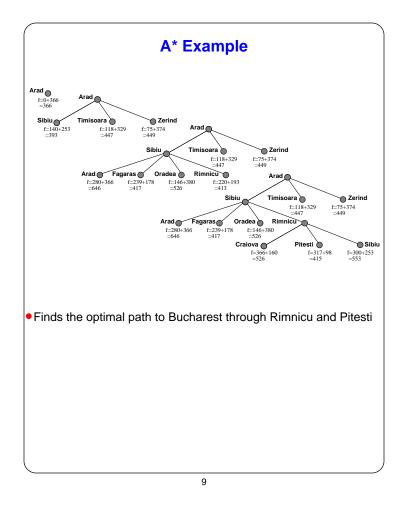
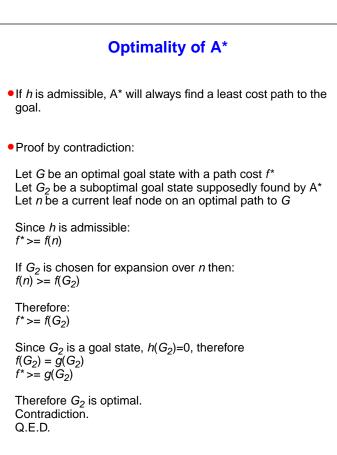

Best-First Properties

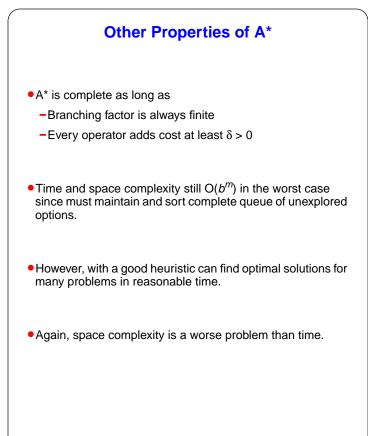

- Not complete, may follow infinite path if heuristic rates each state on such a path as the best option. Most reasonable heuristics will not cause this problem however.
- Worst case time complexity is still O(b^m) where m is the maximum depth.
- Since must maintain a queue of all unexpanded states, space-complexity is also O(b^m).
- However, a good heuristic will avoid this worst-case behavior for most problems.


5

Beam Search


- Space and time complexity of storing and sorting the complete queue can be too inefficient.
- Beam search trims queue to the best *n* options (*n* is called the **beam width**) at each point.
- Focuses search more but may eliminate solution even for finite seach graphs





8

10

Heuristic Functions

- 8-puzzle search space
 - -Typical solution length: 20 steps
 - -Average branching factor: 3
 - -Exhaustive search: 3²⁰=3.5 x 10⁹
 - -Bound on unique states: 9! = 362,880

5	4					
6	1	8				
7	3	2				
Start State						

1	2	3
8		4
7	6	5

Goal State

- Admissible Heuristics:
 - -Number of tiles out of place (h_1) : 7
 - -City-block (Manhattan) distance (*h*₂): 2+3+3+2+4+2+0+2=18

Heuristic Performance

- Experiments on sample problems can determine the number of nodes searched and CPU time for different strategies.
- One other useful measure is effective branching factor: If a method expands N nodes to find solution of depth d, and a uniform tree of depth d would require a branching factor of b* to contain N nodes, the effective branching factor is b*

$$N = 1 + b^* + (b^*)^2 + \dots + (b^*)^d$$

• Experimental Results on 8-puzzle problems

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
1	112	13	12	2.87	1.48	1.45
5	680	20	18	2.73	1.34	1.30
3	6384	39	25	2.80	1.33	1.24
)	47127	93	39	2.79	1.38	1.22
2	364404	227	73	2.78	1.42	1.24
1	3473941	539	113	2.83	1.44	1.23
5	-	1301	211	-	1.45	1.25
3	-	3056	363	-	1.46	1.26
)	-	7276	676	-	1.47	1.27
2	-	18094	1219	-	1.48	1.28
1	-	39135	1641	-	1.48	1.26

13

Quality of Heuristics

- ISince A* expands all nodes whose f value is less than that of an optimal solution, it is always better to use a heuristic with a higher value as long as it does not over-estimate.
- Therefore h_2 is uniformly better than h_1 , or h_2 **dominates** h_1 .
- A heuristic should also be easy to compute, otherwise the overhead of computing the heuristic could outweigh the time saved by reducing search (e.g. using full breadth-first search to estimate distance wouldn't help).

14

Inventing Heuristics

- Many good heuristics can be invented by considering relaxed versions of the problem (abstractions).
- For 8-puzzle:

A tile can move from square A to B if A is adjacent to B and B is blank

(a) A tile can move from square A to B if A is adjacent to B.
(b) A tile can move from square A to B if B is blank.
(c) A tile can move from square A to B.

- (c) A tile can move from square A to B.
- If there are a number of features that indicate a promising or unpromising state, a weighted sum of these features can be useful. Learning methods can be used to set weights.