
1

Inference in First-Order Logic

2

First-Order Deduction

• Want to be able to draw logically sound conclusions from a
knowledge-base expressed in first-order logic.

• Several styles of inference:

- Forward chaining

- Backward chaining

- Resolution refutation

• Properties of inference procedures:

- Soundness: If A |− B then A |= B

- Completeness: If A |= B then A |− B

• Forward and backward chaining are sound and can be
reasonably efficient but are incomplete.

• Resolution is sound and complete for FOPC but can be
very inefficient.

3

Inference Rules for Quantifiers

• Let SUBST(θ, α) denote the result of applying a substitution
or binding list θ to the sentence α.

- SUBST({x/Tom, y,/Fred}, Uncle(x,y)) = Uncle(Tom, Fred)

• Inference rules

- Universal Elimination : ∀v α |− SUBST({v/g},α)
for any sentence, α, variable, v, and ground term, g

∀x Loves(x, FOPC) |− Loves(Ray, FOPC)

- Existential Elimination : ∃v α |− SUBST({v/k},α)
for any sentence, α, variable, v, and constant symbol, k,
that doesn’t occur elsewhere in the KB (Skolem
constant)

∃x (Owns(Mary,x) ∧ Cat(x)) |− Owns(Mary,MarysCat) ∧
Cat(MarysCat)

- Existential Introduction : α |- ∃v SUBST({g/v},α)
for any sentence, α, variable, v, that does not occur in α,
and ground term, g, that does occur in α

Loves(Ray, FOPC) |− ∃x Loves(x, FOPC)

4

Sample Proof

1) ∀x,y(Parent(x,y)∧ Male(x) ⇒ Father(x,y))
2) Parent(Tom,John)
3) Male(Tom)

Using Universal Elimination from 1)

4) ∀y(Parent(Tom,y)∧ Male(Tom) ⇒ Father(Tom,y))

Using Universal Elimination from 4)

5) Parent(Tom,John)∧ Male(Tom) ⇒Father(Tom,John)

Using And Introduction from 2) and 3)

6) Parent(Tom,John) ∧ Male(Tom)

Using Modes Ponens from 5) and 6)

7) Father(Tom,John)

5

Generalized Modus Ponens

• Combines three steps of “natural deduction” (Universal
Elimination, And Introduction, Modus Ponens) into one.

• Provides direction and simplification to the proof process for
standard inferences.

• Generalized Modus Ponens:
p1´, p2´, ...pn´, (p1 ∧ p2 ∧...∧pn ⇒ q) |− SUBST(θ,q)

where θ is a substitution such that for all i
SUBST(θ,pi´)=SUBST(θ,pi)

• 1) ∀x,y(Parent(x,y)∧ Male(x) ⇒ Father(x,y))
2) Parent(Tom,John)
3) Male(Tom)

θ={x/Tom, y/John)

4) Father(Tom,John)

6

Canonical Form

• In order to utilize generalized Modus Ponens, all sentences
in the KB must be in the form of Horn sentences:

∀v1,v2,...vn p1 ∧ p2 ∧...∧pm ⇒ q

• Also called Horn clauses , where a clause is a disjunction
of literals, because they can be rewritten as disjunctions
with at most one non-negated literal.

∀v1,v2,...vn ¬p1 ∨ ¬p2∨ ... ∨ ¬ pn ∨ q

If θ is the constant False, this simplifies to

∀v1,v2,...vn ¬p1 ∨ ¬p2∨ ... ∨ ¬ pn

Otherwise the sentence is called a definite clause (exactly
one non-negated literal).

Single positive literals (facts) are Horn clauses with no
antecedent.

• Quantifiers can be dropped since all variables can be
assumed to be universally quantified by default.

• Many statements can be transformed into Horn clauses, but
many cannot (e.g. P(x)∨Q(x), ¬P(x))

7

Unification

• In order to match antecedents to existing literals in the KB,
need a pattern matching routine.

• UNIFY(p,q) takes two atomic sentences and returns a
substitution that makes them equivalent.

UNIFY(p,q)=θ where SUBST(θ,p)=SUBST(θ,q)

θ is called a unifier .

• Examples

UNIFY(Parent(x,y), Parent(Tom, John)) = {x/Tom, y/John}

UNIFY(Parent(Tom,x), Parent(Tom, John)) = {x/John})

UNIFY(Likes(x,y), Likes(z,FOPC)) = {x/z, y/FOPC}

UNIFY(Likes(Tom,y), Likes(z,FOPC)) = {z/Tom, y/FOPC}

UNIFY(Likes(Tom,y), Likes(y,FOPC)) = fail

UNIFY(Likes(Tom,Tom), Likes(x,x)) = {x/Tom}

UNIFY(Likes(Tom,Fred), Likes(x,x)) = fail

8

Unification
(cont.)

• Exact variable names used in sentences in the KB should not
matter.

• But if Likes(x,FOPC) is a formula in the KB, it does not unify
with Likes(John,x) but does unify with Likes(John,y).

• To avoid such conflicts, one can standardize apart one of the
arguments to UNIFY to make its variables unique by
renaming them.

Likes(x,FOPC) -> Likes(x1, FOPC)
UNIFY(Likes(John,x),Likes(x1,FOPC)) = {x1/John, x/FOPC}

• There are many possible unifiers for some atomic sentences.

UNIFY(Likes(x,y),Likes(z,FOPC)) = {x/z, y/FOPC}
 {x/John, z/John, y/FOPC}
 {x/Fred, z/Fred, y/FOPC}

UNIFY should return the most general unifier which makes
the least commitment to variable values.

9

Forward Chaining

• Use modus ponens to always deriving all consequences
from new information.

• Inferences cascade to draw deeper and deeper
conclusions

• To avoid looping and duplicated effort, must prevent
addition of a sentence to the KB which is the same as one
already present.

• Must determine all ways in which a rule (Horn clause) can
match existing facts to draw new conclusions.

10

Forward Chaining Algorithm

• A sentence is a renaming of another if it is the same except for a
renaming of the variables.

• The composition of two substitutions combines the variable
bindings of both such that:

SUBST(COMPOSE(θ1,θ2),p) = SUBST(θ2,SUBST(θ1,p))

procedure FORWARD-CHAIN(KB, p)

if there is a sentence inKB that is a renaming ofp then return
Add p to KB
for each (p1 ^ . . .^ pn) q) in KB such that for somei, UNIFY(pi,p) = � succeedsdo

FIND-AND-INFER(KB, [p1, . . . ,pi�1, pi+1, . . . ,pn], q,�)
end

procedure FIND-AND-INFER(KB, premises, conclusion, �)

if premises = [] then
FORWARD-CHAIN(KB, SUBST(�,conclusion))

else for each p0 in KB such that UNIFY(p0, SUBST(�, FIRST(premises))) = �2 do
FIND-AND-INFER(KB, REST(premises),conclusion, COMPOSE(�,�2))

end

11

Forward Chaining Example

Assume in KB
1) Parent(x,y)∧ Male(x) ⇒ Father(x,y)
2) Father(x,y)∧ Father(x,z)⇒ Sibling(y,z)

Add to KB
3) Parent(Tom,John)

Rule 1) tried but can’t “fire”

Add to KB
4) Male(Tom)

Rule 1) now satisfied and triggered and adds:
5) Father(Tom, John)

Rule 2) now triggered and adds:
6) Sibling(John, John) {x/Tom, y/John, z/John}

Add to KB
7) Parent(Tom,Fred)

Rule 1) triggered again and adds:
8) Father(Tom,Fred)

Rule 2) triggered again and adds:
9) Sibling(Fred,Fred) {x/Tom, y/Fred, z/Fred}

Rule 2) triggered again and adds:
10) Sibling(John, Fred) {x/Tom, y/John, z/Fred}

Rule 2) triggered again and adds:
11) Sibling(Fred, John) {x/Tom, y/Fred, z/John}

12

Problems with Forward Chaining

• Inference can explode forward and may never terminate.

Even(x) ⇒ Even(plus(x,2))
Integer(x) ⇒ Even(times(2,x))
Even(x) ⇒ Integer(x)
Even(2)

• Inference is not directed towards any particular conclusion
or goal. May draw lots of irrelevant conclusions.

2 4

6

8

12

10

16

14

24

20

18

32

28
26
48
22

40
36
34

64

13

Backward Chaining

• Start from query or atomic sentence to be proven and look
for ways to prove it.

• Query can contain variables which are assumed to be
existentially quantified.

Sibling(x,John) ?
Father(x,y) ?

Inference process should return all sets of variable bindings
that satisfy the query.

• First try to answer query by unifying it to all possible facts in
the KB.

• Next try to prove it using a rule whose consequent unifies
with the query and then try to recursively prove all of it’s
antecedents.

14

Backward Chaining Algorithm

• Given a conjunction of queries, first get all possible answers to
the first conjunct and then for each resulting substitution try to
prove all of the remaining conjuncts.

• Assume variables in rules are renamed (standardized apart)
before each use of a rule.

function BACK-CHAIN(KB, q) returns a set of substitutions

BACK-CHAIN-LIST(KB, [q], fg)
function BACK-CHAIN-LIST(KB, qlist, �) returns a set of substitutions

inputs: KB, a knowledge base
qlist, a list of conjuncts forming a query (� already applied)�, the current substitution

static: answers, a set of substitutions, initially empty

if qlist is emptythen return f�g
q FIRST(qlist)

for each q0
i in KB such that�i UNIFY(q,q0

i) succeedsdo
Add COMPOSE(�,�i) to answers

end
for each sentence (p1 ^ . . . ^ pn) q0

i) in KB such that�i UNIFY(q,q0
i) succeedsdo

answers BACK-CHAIN-LIST(KB, SUBST(�i, [p1 . . .pn]), COMPOSE(�,�i)) [answers
end

return the union of BACK-CHAIN-LIST(KB, REST(qlist),�) for each� 2 answers

15

Backchaining Examples

KB:
1) Parent(x,y)∧ Male(x) ⇒ Father(x,y)
2) Father(x,y)∧ Father(x,z)⇒ Sibling(y,z)
3) Parent(Tom,John)
4) Male(Tom)
7) Parent(Tom,Fred)

Query: Parent(Tom,x)
Answers: ({x/John}, {x/Fred})

Query: Father(Tom,s)
 Subgoal: Parent(Tom,s)∧ Male(Tom)
 {s/John}
 Subgoal: Male(Tom)
 Answer: {s/John}
 {s/Fred}
 Subgoal: Male(Tom)
 Answer: {s/Fred}
Answers: ({s/John}, {s/Fred})

16

Backchaining Examples
(cont)

Query: Father(f,s)
Subgoal: Parent(f,s)∧ Male(f)
 {f/Tom, s/John}
 Subgoal: Male(Tom)
 Answer: {f/Tom, s/John}
 {f/Tom, s/Fred}
 Subgoal: Male(Tom)
 Answer: {f/Tom, s/Fred}
Answers: ({f/Tom,s/John}, {f/Tom,s/Fred})

Query: Sibling(a,b)
Subgoal: Father(f,a)∧ Father(f,b)

{f/Tom, a/John}
 Subgoal: Father(Tom,b)
 {b/John}
 Answer: {f/Tom, a/John, b/John}
 {b/Fred}
 Answer: {f/Tom, a/John, b/Fred}

{f/Tom, a/Fred}
 Subgoal: Father(Tom,b)
 {b/John}
 Answer: {f/Tom, a/Fred, b/John}
 {b/Fred}
 Answer: {f/Tom, a/Fred, b/Fred}
Answers: ({f/Tom, a/John, b/John},{f/Tom, a/John, b/Fred}

{f/Tom, a/Fred, b/John}, {f/Tom, a/Fred, b/Fred})

17

Incompleteness

• Rule-based inference is not complete, but is reasonably
efficient and useful in many circumstances.

• Still can be exponential or not terminate in worst case.

• Incompleteness example:

P(x) ⇒ Q(x)
¬P(x) ⇒ R(x) (not Horn)
Q(x) ⇒ S(x)
R(x) ⇒ S(x)

Entails S(A) for any constant A but not inferable from modus
ponens

18

Completeness

• In 1930 GÖdel showed that a complete inference
procedure for FOPC existed, but did not demonstrate one
(non-constructive proof).

• In 1965, Robinson showed a resolution inference
procedure that was sound and complete for FOPC.

• However, the procedure may not halt if asked to prove a
thoerem that is not true, it is said to be semidecidable
(a type of undecidability).

If a conclusion C is entailed by the KB then the procedure
will eventually terminate with a proof. However if it is not
entailed, it may never halt.

• It does not follow that either C or ¬C is entailed by a KB
(may be independent). Therefore trying to prove both
a conjecture and its negation does not help.

• Inconsistency of a KB is also semidecidable.

19

Resolution

• Propositional version.

{α ∨ β, ¬β ∨ γ} |− α ∨ γ OR {¬α⇒ β, β ⇒ γ} |− ¬α ⇒ γ

Reasoning by cases OR transitivity of implication

• First-order form

For two literals pj and qk in two clauses

p1 ∨ ... pj ... ∨ pm
q1 ∨ ... qk ... ∨ qn

such that θ=UNIFY(pj, ¬qk), derive

SUBST(θ, p1 ∨...pj-1∨pj+1...∨pm ∨ q1∨... qk-1∨qk+1 ... ∨qn)

• Can also be viewed in implicational form where all negated
literals are in a conjunctive antecedent and all positive
literals in a disjunctive conclusion.

¬p1 ∨ ...∨ ¬pm ∨ q1 ∨ ...∨ qn ⇔

 p1∧... ∧ pm ⇒ q1 ∨ ...∨ qn

20

Conjunctive Normal Form
(CNF)

• For resolution to apply, all sentences must be in
conjunctive normal form , a conjunction of disjunctions of
literals

(a1 ∨ ...∨ am) ∧
(b1 ∨ ... ∨ bn) ∧
..... ∧
(x1 ∨ ... ∨ xv)

• Representable by a set of clauses (disjunctions of literals)

• Also representable as a set of implications (INF).

• Example

 Initial CNF INF
P(x) ⇒ Q(x) ¬P(x) ∨ Q(x) P(x) ⇒ Q(x)
¬P(x) ⇒ R(x) P(x) ∨ R(x) True ⇒ P(x) ∨R(x)
Q(x) ⇒ S(x) ¬Q(x) ∨ S(x) Q(x) ⇒ S(x)
R(x) ⇒ S(x) ¬R(x) ∨ S(x) R(x) ⇒ S(x)

21

Resolution Proofs

• INF (CNF) is more expressive than Horn clauses.

• Resolution is simply a generalization of modus ponens.

• As with modus ponens, chains of resolution steps can be
used to construct proofs.

• Factoring removes redundant literals from clauses

S(A) ∨ S(A) −> S(A)

>=P(w) Q(w) >=Q(y) S(y)

>=R(z) S(z)

>=P(w) S(w)

{y/w}

>= >True P(x) R(x)

{w/x}

>=True S(A)

{x/A, z/A}

>= >

True S(x) R(x)

22

Refutation Proofs

• Unfortunately, resolution proofs in this form are still
incomplete.

• For example, it cannot prove any tautology (e.g. P∨¬P)
from the empty KB since there are no clauses to resolve.

• Therefore, use proof by contradiction (refutation,
reductio ad absurdum). Assume the negation of the
theorem P and try to derive a contradiction (False, the
empty clause).

(KB ∧ ¬P ⇒ False) ⇔ KB ⇒ P

>=P(w) Q(w) >=Q(y) S(y)

>=R(z) S(z)

>=P(w) S(w)

{y/w}

>= >True P(x) R(x)

{w/x}

>= >

True S(x) R(x)

{z/x}

>=S(A) False

>=True False

{x/A}

S(x)>=True

23

Resolution Theorem Proving

• Convert sentences in the KB to CNF (clausal form)

• Take the negation of the poposed theorem (query), convert
it to CNF, and add it to the KB.

• Repeatedly apply the resolution rule to derive new clauses.

• If the empty clause (False) is eventually derived, stop and
conclude that the proposed theorem is true.

24

Conversion to Clausal Form

• Eliminate implications and biconditionals by rewriting
them.

p ⇒ q −> ¬p ∨ q p ⇔ q -> (¬p ∨ q) ∧ (p ∨ ¬q)

• Move ¬ inward to only be a part of literals by using
deMorgan’s laws and quantifier rules.

- ¬(p ∨ q) −> ¬p ∧ ¬q

- ¬(p ∧ q) −> ¬p ∨¬q

- ¬∀x p −> ∃x ¬p

- ¬∃x p −> ∀x ¬p

- ¬¬p −> p

• Standardize variables to avoid use of the same variable
name by two different quantifiers.

∀x P(x) ∨ ∃x P(x) −> ∀x1 P(x1) ∨ ∃x2 P(x2)

• Move quantifiers left while maintaining order. Renaming
above guarantees this is a truth-preserving transformation.

∀x1 P(x1) ∨ ∃x2 P(x2) −> ∀x1∃x2 (P(x1) ∨ P(x2))

25

Conversion to Clausal Form
(cont)

• Skolemize : Remove existential quantifiers by replacing
each existentially quantified variable with a Skolem
constant or Skolem function as appropriate.

- If an existential variable is not within the scope of any
universally quantified variable, then replace every
instance of the variable with the same unique constant
that does not appear anywhere else.

∃x (P(x) ∧ Q(x)) −> P(C1) ∧ Q(C1)

- If it is within the scope of n universally quantified
variables, then replace it with a unique n-ary function over
these universally quantified variables.

∀x1∃x2 (P(x1) ∨ P(x2)) −> ∀x1(P(x1) ∨ P(f1(x1)))

∀x(Person(x) ⇒ ∃y(Heart(y) ∧ Has(x,y))) −>
∀x(Person(x) ⇒ Heart(HeartOf(x)) ∧
 Has(x,HeartOf(x)))

- Afterwards, all variables can be assumed to be
universally quantified, so remove all quantifiers.

26

Conversion to Clausal Form
(cont)

• Distribute ∧ over ∨ to convert to conjunctions of clauses

(a ∧ b) ∨ c −> (a ∨ c) ∧ (b ∨ c)
(a ∧ b) ∨ (c ∧ d) −> (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ d) ∧ (b ∨ d)

Can exponentially expand size of sentence.

• Flatten nested conjunctions and disjunctions to get
final CNF

(a ∨ b) ∨ c −> (a ∨ b ∨ c)
(a ∧ b) ∧ c −> (a ∧ b ∧ c)

• Convert clauses to implications if desired for readability

(¬a ∨ ¬b ∨ c ∨ d) −> a ∧ b ⇒ c ∨ d

27

Sample Clausal Conversion

∀x((Prof(x) ∨ Student(x))⇒ (∃y(Class(y) ∧ Has(x,y))∧
∃y(Book(y) ∧ Has(x,y))))

∀x(¬(Prof(x) ∨ Student(x)) ∨ (∃y(Class(y) ∧ Has(x,y))∧
∃y(Book(y) ∧ Has(x,y))))

∀x((¬Prof(x) ∧ ¬Student(x)) ∨ (∃y(Class(y) ∧ Has(x,y))∧
∃y(Book(y) ∧ Has(x,y))))

∀x((¬Prof(x) ∧ ¬Student(x)) ∨ (∃y(Class(y) ∧ Has(x,y))∧
∃z(Book(z)∧ Has(x,z))))

∀x∃y∃z((¬Prof(x)∧¬Student(x))∨ ((Class(y) ∧ Has(x,y))∧
 (Book(z)∧ Has(x,z))))

(¬Prof(x)∧¬Student(x))∨ (Class(f(x)) ∧ Has(x,f(x))∧
 Book(g(x))∧ Has(x,g(x))))

(¬Prof(x) ∨ Class(f(x))) ∧
(¬Prof(x) ∨ Has(x,f(x)))∧
(¬Prof(x) ∨ Book(g(x)))∧
(¬Prof(x) ∨ Has(x,g(x)))∧
(¬Student(x) ∨ Class(f(x))) ∧
(¬Student(x) ∨ Has(x,f(x)))∧
(¬Student(x) ∨ Book(g(x)))∧
(¬Student(x) ∨ Has(x,g(x))))

28

Sample Resolution Proof

• Jack owns a dog.
Every dog owner is an animal lover.
No animal lover kills an animal.
Either Jack or Curiosity killed Tuna the cat.
Did Curiosity kill the cat?

• A) ∃x Dog(x) ∧ Owns(Jack,x)
B) ∀x (∃y Dog(y) ∧ Owns(x,y)) ⇒ AnimalLover(x))
C) ∀x AnimalLover(x) ⇒ (∀y Animal(y) ⇒ ¬Kills(x,y))
D) Kills(Jack,Tuna) ∨ Kills(Cursiosity,Tuna)
E) Cat(Tuna)
F) ∀x(Cat(x) ⇒ Animal(x))

Query: Kills(Curiosity,Tuna)

• A1) Dog(D)
A2) Owns(Jack,D)
B) Dog(y) ∧ Owns(x,y) ⇒ AnimalLover(x)
C) AnimalLover(x) ∧ Animal(y) ∧ Kills(x,y) ⇒ False
D) Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
E) Cat(Tuna)
F) Cat(x) ⇒ Animal(x)

Query: Kills(Curiosity,Tuna) ⇒ False

29

Resolution Proof

{y/D}

{x/Jack} {x/Tuna}

{y/Tuna}

{x/Jack}

{ }

{ }

Dog(D)

Owns(Jack,D)

AnimalLover(Jack)

Cat(Tuna)

Animal(Tuna)

Kills(Jack,Tuna)

False

>=Kills(Jack,Tuna) False>=Kills(Curiosity,Tuna) False

>=Owns(x,D) AnimalLover(x)

> >=AnimalLover(x) Kills(x,Tuna) False

>=Cat(x) Animal(x)

>> >=AnimalLover(x) Animal(y) Kills(x,y) False

>

Kills(Jack,Tuna} Kills(Curiosity,Tuna)

> >=Dog(y) Owns(x,y) AnimalLover(x)

30

Answer Extraction

• If the query contains existentially quantified variables, these
become universally quantified in the negation.

∃w Kills(w,Tuna) −> Kills(w,Tuna) ⇒ False

• If you compose the substitutions from all unifications made
in the course of a proof, you obtain an answer substitution
that gives a binding for the query variables.

• To find all answers, must find all distinct resolution proofs
since each one may provide a different answer.

31

Resolution Strategies

• Need heuristics and strategies to decide what resolutions to
make in order to control the search for a proof.

• Unit preference : Prefer to make resolutions with single
literals (facts, unit clauses) since this generates a shorter
clause and the goal is to derive the empty clause.

P + ¬P ∨ Q1∨...∨ Qn −> Q1∨...∨ Qn

• Set of Support : Always resolve with a clause from the
query or a clause previously generated from such a
resolution. Directs search towards answering the query
rather than deducing arbitrary consequences of the KB.
Assuming the original KB is consistent, this strategy is
complete.

• Input Resolution : One of the resolving clauses should
always be from the input (i.e. from the KB or the negated
query). Complete for Horn clauses but not in general.

32

Resolution Strategies
(cont)

• Linear Resolution : Generalization of input resolution.
Allow resolutions of clauses P and Q if P is in the input or is
an ancestor of Q in the proof tree.

• Subsumption : Clauses that are more specific than other
clauses should be eliminated as redundant. Such clauses
are said to be subsumed .

P(x) subsumes P(A)
P subsumes P ∨ Q
P(x,y) subsumes P(z,z) ∨ Q(y)

Clause A subsumes clause B is there exists a substitution
θ such that the literals in SUBST(θ,A) are a subset of the
literals in B.

33

GÖdel’s Incompleteness Theorem

• If FOPC is extended to allow for the use of mathematical
induction for showing that statements are true for all natural
numbers, there are true statements that can never be
proven.

• The logical theory of numbers starts with a single constant
0, the function S (successor) for generating the natural
numbers, and axioms defining functions for multiplication,
addition, and exponentiation.

• Proof relies on producing a unique number for each
sentence in the logic (GÖdel number) and constructing a
sentence whose number is n which states “Sentence
number n is not provable.”

• If this sentence is provable from the axioms, then it is a
false statement which is provable and therefore the axioms
are inconsistent.

• If this sentence is not provable from the axioms, then it is a
true statement which is not provable and inference is
incomplete.

34

Logicist Program

• Encode general knowledge about the world and/or any
given domain as a set of sentences in first-order logic.

• Use general logical inference to solve problems and answer
questions.

• Focus on epistemological problems of what and how to
represent knowledge rather than the heuristic problems of
how to efficiently conduct search.

• Problems with the logicist program:

- Knowledge representation problem

- Knowledge acquisition problem

- Intractable search problem

