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Need for Probabilistic Reasoning

Most everyday reasoning is based on uncertain evidence
and inferences.

Classical logic, which only allows conclusions to be strictly
true or strictly false, does not account for this uncertainty or|
the need to weigh and combine conflicting evidence.
Straightforward application of probability theory is
impractical since the large number of probability parameter
required are rarely, if ever, available.

Therefore, early expert systems employed faidyioc o
methods for reasoning under uncertainty and for combining|
evidence.

Recentlz, methods more rigorously founded in probability
theory that attempt to decrease the amount of conditional
probabilities required have flourished.

Axioms of Probability Theory

« All probabilities between 0 and 1
0<sP(A)<1

e True proposition has probability 1, false has
probability 0.

P(true) =1 P(false) = 0.
e The probability of disjunction is:
P(ALCB) = P(A) + P(B) - P(ALB)
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Conditional Probability

P(A|B) is the probability oA givenB
Assumes thaB is all and only information
known.
Defined by:
P(ALB)

P(B)

D

P(A|B) =

Independence

* A andB areindependent iff:
P(A|B)=P(A)
P(B|A)=P(B)

These two constraints are logically equivalent

e Therefore, ifA andB are independent:
P(ACB) _

P(A|B) :W =P(A)

P(ALCB)=P(A)P(B)

Classification (Categorization)

Given:

— A description of an instancel[JX, where X is the
instance language or instance space.

— A fixed set of categorie€={c,, C,,...C.}

Determine:

— The category of: ¢(x)[JC, wherec(x) is a
categorization function whose domairkiand whose
range isC.

— If ¢(x) is a binary functiol©={0,1} ({true,false},
{positive, negative}) then it is called@ncept.




Learning for Categorization

 Atraining example is an instangglX,
paired with its correct categogyx):
<X, ¢(X)> for an unknown categorization
function,c.

» Given a set of training examplds,

» Find a hypothesized categorization function,
h(x), such that:

O<x,¢(X)>0D :h(x) =c(x)
Consistency

Sample Category Learning Problem

« Instance language: <size, color, shape>
— sized {small, medium, large}
— color {red, blue, green}
— shapéd] {square, circle, triangle}

e C={positive, negative}

* D Example| Size Color Shape Categqry
1 small red circle positive
2 large red circle positive
3 small red triangle | negative
4 large blue circle negativg

Joint Distribution

» The joint probability distribution for a set of @om variables,
Xy,....X, gives the probability of every combination of vauann-
dimensional array with" values if all variables are discrete with
values, al\" values must sum to 1): R(...,X,)

positive negative

circle square circle square
red 0.20 0.02 red 0.05 0.30
blue 0.02 0.01 blue 0.20 0.20

« The probability of all possible conjunctions (assigents of values to
some subset of variables) can be calculated by sugniine
appropriate subset of values from the joint disiiim.

P(red Ccircle) = 020+ 005= 025
P(red) = 020+ 002+ 005+ 0.3= 057

* Therefore, all conditional probabilities can alsbdalculated.
P( positive| red Ocircle) = P( posmve[re_d Ccircle) _ 020= 080
P(red Ocircle) 025 9

Probabilistic Classification

Let Y be the random variable for the class which takes values
{ylvyzv . ym}

Let X be the random variable describing an instance consisting
of a vector of values far features ¥,,X,...X>, letx, be a
possible value foK andx; a possible value fox;

For classification, we need to comput&®( | X=x,) fori=1...m
However, given no other assumptions, this requires a table
giving the probability of each category for each possible instan
in the instance space, which is impossible to accurately ¢stim3
from a reasonably-sized training set.

— AssumingY and allX; are binary, we need'2ntries to specify
P(Y=pos [X=x,) for each of the 2possiblex,’s since
P(Y=neg [X=x,) = 1 — P¥=pos [X=x,)

— Compared to 21— 1 entries for the joint distribution B&y,X,...X,)
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Bayes Theorem

P(E|H)P(H)

PIHIE) ===

Simple proof from definition of conditional probability:

P(H|E) = P(HCE) (Def. cond. prob.)
P(E)
P(E|H) =% (Def. cond. prob.)

P(H CE) = P(E|H)P(H)

P(E|H)P(H)

QED: P(H |E) = hE
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Bayesian Categorization

» Determine category of by determining for eaclh

P(Y=y |X=x)= P(y = Ml)::zg(x::xj; [Y=y)

* P(X=xy can be determined since categories are
complete and disjoint.

P =y)P(X =% 1Y =¥)

m -1
=) P(X =x)

YRr=yIx=x)=

POX =)= 3 PY = y)P(X =X, Y =y)




Bayesian Categorization (cont.)

Need to know:

— Priors: PY{=y)

— Conditionals: PX=x| Y=y;)

P(Y=y;) are easily estimated from data.

— If n; of the examples iD are in ythen P¥=y;)) = n,/ |D|
Too many possible instances (e.gfa binary
features) to estimate all®€x, | Y=y,).

Still need to make some sort of independence
assumptions about the features to make learning
tractable.

Generative Probabilistic Models

= Assume a simple (usually unrealistic) probabilistic method
by which the data was generated.

+ For categorization, each category has a different
parameterized generative model that characterizes that
category.

+ Training : Use the data for each category to estimate the
parameters of the generative model for that category.

— Maximum Likelihood Estimation (MLE) : Set parameters to

maximize the probability that the model producesgiven
training data.

— If M, denotes a model with parameter valuesdD, is the
training data for théth class, find model parameters for cllass
(%) that maximize the likelihood d,:

A =argmaxP(D, |M,)
A

» Testing: Use Bayesian analysis to determine the category
model that most likely generated a specific test instance.
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Naive Bayes Generative Model

Color Shape i Color Shape
Positive Negative 15

Naive Bayes Inference Problem

I% red circ
<7 7%

Color Shape i Color Shape
Positive Negative 1

Naive Bayesian Categorization

If we assume features of an instance are indepegdent
the category(conditionally independent%.

PXTY) = P(Xy, X5, X, 1Y) =[] P(X; Y)
=

Therefore, we then only need to knowXR () for each
possible pair of a feature-value and a category.
If Yand allX; and binary, this requires specifying only 2
parameters:
— P(=true |Y=true) and PX;=true |Y=false) for eaclx;
— P(X=false |Y) = 1 — PK=true |Y)

Compared to specifying"parameters without any
independence assumptions.

Naive Bayes Categrization Example

Probability positive negative
P(Y) 0.5 05
P(small [Y) 0.4 0.4
P(medium ) 0.1 0.2
P(arge Iv) 0.5 0.4 Test Instance:
P(red |Y) 0.9 0.3 <medium ,red, circle>
P(blue |Y) 0.05 0.3
P(green ) 0.05 0.4
P(squareY) 0.05 0.4
P(triangle [Y) 0.05 0.3
P(circle [Y) 0.9 0.3




Naive Bayes Categorization Example

Probability positive negative
P 0.5 0.5
P(medium [Y) 0.1 0.2
P(red ) 0.9 0.3 Te_st Instancg:
P(circle [Y) 0.9 03 <medium ,red, circle>

P(positive [X) = P(positive)*P(medium | positive)*P(red | positive)*iR¢te | positive) / PX)
0.5 * 0.1 * 0.9 * 0.9
= 0.0405/PX) =0.0405/0.0495 = 0.8181
P(negative K) = P(negative)*P(medium | negative)*P(red | negativigjtBle | negative) / X))
0.5 * 0.2 * 0.3 * 03
= 0.009/PX) =0.009/0.0495=0.1818

P(positive [X) + P(negative X) = 0.0405 / PX) + 0.009 / PX) = 1
P(X) = (0.0405 + 0.009) = 0.0495

Naive Bayes Diagnosis Example

* C = {allergy, cold, well}
* e = sneezee, = cough;e; = fever
* E ={sneeze, coughfever}

Prob Well [Cold |Allergy
P@) 0.9 0.05 0.05
P(sneeze)) 0.1 0.9 0.9
P(coughd;) 0.1 0.8 0.7
P(feverg;) 0.01 0.7 0.4

Naive Bayes Diagnosis Example (cont.)

Probability Well Cold Allergy

P@G) 0.9 0.05 0.05

P(sneezed;) 0.1 0.9 0.9 E={sneeze, cough fever}
P(cough f;) 0.1 0.8 0.7

P(fever [c) 0.01 0.7 0.4

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379
P(well | E) = 0.23

P(cold | E) = 0.26

P(allergy | E) = 0.50

Estimating Probabilities

* Normally, probabilities are estimated based on observed
frequencies in the training data.

« If D containa, examples in categosy, andn;, of thesen,
examples have théh value for feature;, X;;, then:

- — oy = Mk
POX =% 1Y = %) e

» However, estimating such probabilrties from small training
sets is error-prone.

« If due only to chance, a rare featuxg,is always false in
the training dataly, :P(X;=true |Y=y,) = 0.

» If X=true then occurs in a test exam{ethe result is that
Oy PX| Y=y = 0 anddy,: P(Y=y,| X) =0

Probability Estimation Example

x Size Color | Shape| Categor Probability positive negative
P(Y) 0.5 0.5
1 small red circle positive P(small [Y) 0.5 0.5
P(medium ) 0.0 0.0

2 large red circle positive

P(large Iv) 0.5 0.5
3 small | red triangle| negitive P(red |Y) 1.0 0.5
P(blue [Y) 0.0 0.5
4 large blue circle negitive P(green ) 0.0 0.0
P(squareY) 0.0 0.0
Test Instanc&: P(m‘t’mgle M 0.0 05
<medium, red, circle> P(circle [Y) 10 0.5

P(positive X) =0.5*0.0*1.0* 1.0/ P(X) =0
P(negative X) =0.5*0.0*0.5*0.5/P(X)=0 2

Smoothing

e To account for estimation from small samples,
probability estimates are adjustedsooothed.

» Laplace smoothing using amrestimate assumes that
each feature is given a prior probability that is
assumed to have been previously observed in a
“virtual” sample of sizem.

N, +mp

P(X =x.1Y= —_ik P

(X =% 1Y = y) n*m

» For binary featureq is simply assumed to be 0.5.




Laplace Smothing Example

» Assume training set contains 10 positive examples
— 4: small
— 0: medium
— 6: large
» Estimate parameters as followsr(if1, p=1/3)
— P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394
— P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
— P(large | positive) = (6 + 1/3) / (10 + 1) =  0.576

— P(small or medium or large | positive) = 1.0

Text Categorization Applications

Web pages

— Recommending

— Yahoo-like classification
Newsgroup/Blog Messages

— Recommending

— spam filtering

— Sentiment analysis for marketing
News articles

— Personalized newspaper
Email messages

— Routing

— Prioritizing

— Folderizing

— spam filtering

— Advertising on Gmail 26

Text Categorization Methods

* Most common representation of a document
is a “bag of words,” i.e. set of words with
their frequencies, word order is ignored.

» Gives a high-dimensional vector
representation (one feature for each word).

 Vectors are sparse since most words are
rare.

— Zipf's law and heavy-tailed distributions

Naive Bayes for Text

Modeled as generating a bag of words for a
document in a given category by repeatedly
sampling with replacement from a
vocabularyV = {w;, w,,...w,} based on the
probabilities P | c).

Smooth probability estimates with Laplace
m-estimates assuming a uniform distribution
over all words i§ = 1/)V|) andm = |V|

— Equivalent to a virtual sample of seeing each word in
each category exactly once.

Naive Bayes Generative Model for Text

Category

Nigeria ! deal
lottery  nude
! $\Aagra

test homeworl
March scorg

spam »

Naive Bayes Text Classification

Win lotttery $ !

ot M
Nigeria * deal
lottery  nude
! $\Aagra

30




Text Naive Bayes Algorithm
(Train)

LetV be the vocabulary of all words in the document® in
For each category O C
Let D; be the subset of documentslrin categoryc;
Pe) =Dl /Pl
Let T; be the concatenation of all the document®;in
Let n; be the total number of word occurrenceg;in
For each woray, O V
Letn; be the number of occurrenceswpfn T,

Let P, | c) = (n;+ 1) / (;+ V)

Text Naive Bayes Algorithm
(Test)

Given a test documedt
Let n be the number of word occurrencesin
Return the category:
n
argrgaxP(C.) P(a|c)
G I=
Whlereai is the word occurring thigh position inX

Underflow Prevention

« Multiplying lots of probabilities, which are
between 0 and 1 by definition, can result in
floating-point underflow.

 Since logky) = log) + logfy), it is better to
perform all computations by summing logs
of probabilities rather than multiplying
probabilities.

 Class with highest final un-normalized log
probability score is still the most probable.
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Comments on Naive Bayes

« Makes probabilistic inference tractable by
making a strong assumption of conditional
independence.

« Tends to work fairly well despite this strong
assumption.

» Experiments show it to be quite competitive
with other classification methods on
standard datasets.

« Particularly popular for text categorization,
e.g. spam filtering.




