
1

Problem Solving and Search

2

Problem Solving

• Rational agents need to perform sequences of actions in
order to achieve goals.

• Intelligent behavior can be generated by having a look-up
table or reactive policy that tells the agent what to do in
every circumstance, but:

- Such a table or policy is difficult to build

- All contingencies must be anticipated

• A more general approach is for the agent to have
knowledge of the world and how its actions affect it and be
able to simulate execution of actions in an internal model of
the world in order to determine a sequence of actions that
will accomplish its goals.

• This is the general task of problem solving and is typically
performed by searching through an internally modelled
space of world states.

3

Problem Solving Task

• Given:

- An initial state of the world

- A set of possible possible actions or operators that can
be performed.

- A goal test that can be applied to a single state of the
world to determine if it is a goal state.

• Find:

- A solution stated as a path of states and operators that
shows how to transform the initial state into one that
satisfies the goal test.

• The initial state and set of operators implicitly define a state
space of states of the world and operator transitions
between them. May be infinite.

4

Measuring Performance

• Path cost : a function that assigns a cost to a path, typically
by summing the cost of the individual operators in the path.
May want to find minimum cost solution.

• Search cost : The computational time and space (memory)
required to find the solution.

• Generally there is a trade-off between path cost and search
cost and one must satisfice and find the best solution in
the time that is available.

5

Sample Route Finding Problem

 Initial state: Arad
 Goal state: Bucharest

 Path cost: Number of intermediate cities, distance traveled,
 expected travel time

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

6

Sample “Toy” Problems

• 8-puzzle (sliding tile puzzle)

• Peg Puzzle (Hi-Q)

• Cryptarithmetic

 FORTY 29786 F=2, O=9, R=7, T=8,...
+ TEN + 850
+ TEN + 850
 ---------- ---------
 SIXTY 31486

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

7

“Toy” Problems (cont)

• 8-queens problem (N-queens problem)

• Missionaries and cannibals

Identity of individuals irrelevant,best to represent state as

(M,C,B) M = number of missionaries on left bank
 C = number of cannibals on left bank
 B = number of boats on left bank (0 or 1)

Operators to move: 1M, 1C, 2M, 2C, 1M1C

Goal state: (0,0,0)

8

More Realistic Problems

• Route finding

• Travelling salesman problem

• VLSI layout

• Robot navigation

• Web searching

9

Searching Concepts

• A state can be expanded by generating all states that can
be reached by applying a legal operator to the state.

• State space can also be defined by a successor function
that returns all states produced by applying a single legal
operator.

• A search tree is generated by generating search nodes by
successively expanding states starting from the initial state
as the root.

• A search node in the tree can contain

- Corresponding state

- Parent node

- Operator applied to reach this node

- Length of path from root to node (depth)

- Path cost of path from initial state to node

10

Expanding Nodes and Search

Timisoara

Timisoara

(a) The initial state Arad

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Zerind

Rimnicu VilceaOradeaFagarasArad

Arad

Sibiu Zerind

function GENERAL-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state ofproblem
loop do

if there are no candidates for expansionthen return failure
choose a leaf node for expansion according tostrategy
if the node contains a goal statethen return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

11

Search Algorithm

• Easiest way to implement various search strategies is to
maintain a queue of unexpanded search nodes.

• Different strategies result from different methods for
inserting new nodes in the queue.

function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution, or failure

nodes MAKE-QUEUE(MAKE-NODE(INITIAL -STATE[problem]))
loop do

if nodes is emptythen return failure
node REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeedsthen return node
nodes QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

end

12

Search Strategies

• Properties of search strategies

- Completeness

- Time Complexity

- Space Complexity

- Optimality

• Uniformed search strategies (blind, exhaustive, brute-
force) do not guide the search with any additional
information about the problem.

• Informed search strategies (heuristic, intelligent) use
information about the problem (estimated distance from a
state to the goal) to guide the search.

13

Breadth-First Search

• Expands search nodes level by level, all nodes at level d
are expanded before expanding nodes at level d+1

• Implemented by adding new nodes to the end of the queue
(FIFO queue):

 GENERAL-SEARCH(problem, ENQUEUE-AT-END)

• Since eventually visits every node to a given depth,
guaranteed to be complete.

• Also optimal provided path cost is a nondecreasing function
of the depth of the node (e.g. all operators of equal cost)
since nodes explored in depth order.

14

Breadth-First Complexity

• Assume there are an average of b successors to each
node, called the branching factor .

• Therefore, to find a solution path of length d must explore

nodes.

• Plus need bd nodes in memory to store leaves in queue.

• Assuming can expand and check 1000 nodes/sec and need
100 bytes/node storage , b=10

Note memory is a bigger problem than time.

1 b b+ 2 b3 … bd+ + + +

Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

15

Uniform Cost Search

• Like breadth-first except always expand node of least cost
instead of of least depth (i.e. sort new queue by path cost).

• Do not recognize goal until it is the least cost node on the
queue and removed for goal testing.

• Therefore, guarantees optimality as long as path cost never
decreases as a path increases (non-negative operator
costs).

(a) (b)

S

0 S

A B C
1 5 15

5 15

S

A B C

G
11 S

A B C
15

G
11

G
10

S G

A

B

C

1 10

55

15 5

16

Depth-First Search

• Always expand node at deepest level of the tree, i.e. one of
the most recently generated nodes. When hit a dead-end,
backtrack to last choice.

• Implemented by adding new nodes to front of the queue:

GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)

17

Depth-First Properties

• Not guaranteed to be complete since might get lost
following infinite path.

• Not guaranteed optimal since can find deeper solution
before shallower ones explored.

• Time complexity in worst case is still O(bd) since need to
explore entire tree. But if many solutions exist may find one
quickly before exploring all of the space.

• Space complexity is only O(bm) where m is maximum
depth of the tree since queue just contains a single path
from the root to a leaf node along with remaining sibling
nodes for each node along the path.

• Can impose a depth limit , l, to prevent exploring nodes
beyond a given depth. Prevents infinite regress, but
incomplete if no solution within depth limit.

18

Iterative Deepening

• Conduct a series of depth-limited searches, increasing
depth-limit each time.

• Seems wasteful since work is repeated, but most work is at
the leaves at each iteration and is not repeated.

Depth-first:

Iterative deepening:

Time complexity is still O(bd)
Space complexity O(bm)

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem, a problem

for depth 0 to1 do
if DEPTH-LIMITED-SEARCH(problem, depth) succeedsthen return its result

end
return failure

1 b b+ 2 … bd 2– bd 1– bd+ + + + +

d 1+()1 db d 1–()b+ 2 … 3bd 2– 2bd 1– 1bd+ + + + +

19

Avoiding Repeated States

• Basic search methods may repeatedly search the same
state if it can be reached via multiple paths.

• Three methods for reducing repeated work in order of
effectiveness and computational overhead:

- Do not follow self-loops (remove successors back to the
same state).

- Do no create paths with cycles (remove successors
already on the path back to the root). O(d) overhead.

- Do not generate any state that was already generated.
Requires storing all generated states (O(bd) space) and
searching them (usually using a hash-table for efficiency).

A

B

C

D

A

BB

CCCC

