N-Gram Model Formulas

Word sequences

w =w..w,
Chain rule of probability
POT) = POR)POs)P [P, ™) = T POw)
Bigram approximation
POty =T [POs)
N-gram approximation
POt =T [PO)

Estimating Probabilities

* N-gram conditional probabilities can be estimated
from raw text based on the relative frequency of
word sequences.

Cw,_w,)
Bi . P w,|w,_)= N n=1""n/
igram (W, [W,.1) Cov)
_ C(WyyaW,)
_ . P -1 = —_\N"n=N+1""n/
N-gram: (W, | W,Zy.) v)

» To have a consistent probabilistic model, append a
unique start (<s>) and end (</s>) symbol to every
sentence and treat these as additional words.

Perplexity

Measure of how well a model “fits” the test data.

Uses the probability that the model assigns to the
test corpus.

Normalizes for the number of words in the test
corpus and takes the inverse.

/ 1
PPOT) =4 P(ww,..wy)

Measures the weighted average branching factor
in predicting the next word (lower is better).

Laplace (Add-One) Smoothing

» “Hallucinate” additional training data in which each
possible N-gram occurs exactly once and adjust
estimates accordingly.

Cw,_w,)+1
Bigram: P(Wn | wn_l) = M

Cw,_)+V

Cwyoyw,) +1
CovTy)+V

where V is the total number of possible (N-1)-grams
(i.e. the vocabulary size for a bigram model).

N-gram: P(w, |w),)=

* Tends to reassign too much mass to unseen events,
so can be adjusted to add 0<6<1 (normalized by 8V
instead of V).

Interpolation

* Linearly combine estimates of N-gram
models of increasing order.

Interpolated Trigram Model:
P(Wn | Wn—Z,Wn—l) =)t’IP(Wn | Wl1—2,wn—l) + A’ZP(Wn | Wﬂ—l) + AGP(Wn)

Where: 2 A =1

* Learn proper values for A, by training to
(approximately) maximize the likelihood of
an independent development (a.k.a. tuning)
corpus.

Formal Definition of an HMM

* Aset of N +2 states S={5(,5,,85, ... S\ Sg}

— Distinguished start state: s,

— Distinguished final state: s
* A set of M possible observations V={v,,v,...v,}
* A state transition probability distribution 4={a,}

a,=P(q,, =s;1q,=s,) l<i,jsNandi=0,j=F
N
Eaij+alF =1 0<isN
7=
» Observation probability distribution for each state j

B={b,(k)} |
b,(k)=P(v,att|q,=s;) l=<j<sN l<sk=M
 Total parameter set A={A4,B} 6

Forward Probabilities

 Let a,(j) be the probability of being in state j
after seeing the first # observations (by
summing over all initial paths leading to j).

,(J) = P(0,,0,,..0,, 4, = 5; [A)

Computing the Forward Probabilities

* Initialization
a,(j)=ayb,(0)) 1=j=N
e Recursion

N
Ea,_l(i)al.j]bj(ot) l<j=<N, 1<t=<T
i=1

e Termination

at(j)=

N

P(O | A') = aT(SF) = Zar(i)aiF

1=

Viterbi Scores

* Recursively compute the probability of the most
likely subsequence of states that accounts for the
first 7 observations and ends in state s;.

v,(J)= max P(qy,q»sq, 1> Opses0,y5 4, =8, | A)

90591591
* Also record “backpointers” that subsequently allow

backtracing the most probable state sequence.

= bt(j) stores the state at time #-1 that maximizes the
probability that system was in state s; at time 7 (given
the observed sequence).

Computing the Viterbi Scores

* Initialization
vi(j)=ayb,(0,) 1=j=N
e Recursion
N

v,(j) =maxv, (Da;b;(0,) 1=j=N, 1<t=T

e Termination

N
P*=v.(s;)= H}SX vr(i)a

Analogous to Forward algorithm except take max instead of sum |

Computing the Viterbi Backpointers

* Initialization
bt,(j)=s, l=j=N

* Recursion

N
bf,(j)=argmaxvt_1(i)al.jbj(ot) lstN, l<t=<T

i=1

* Termination
N
qr* = bt (s;) = argmax v, (i)a,

i=1
Final state in the most probable state sequence. Follow

backpointers to initial state to construct full sequence. "

Supervised Parameter Estimation

+ Estimate state transition probabilities based on tag
bigram and unigram statistics in the labeled data.
g = C(q, =519, =Sj)
! C(% = Si)
+ Estimate the observation probabilities based on tag/
word co-occurrence statistics in the labeled data.
b, (k) - C(q"c(20 %)
g4, =S5 j)
+ Use appropriate smoothing if training data is sparse.

Context Free Grammars (CFG)

N a set of non-terminal symbols (or variables)
2 a set of terminal symbols (disjoint from N)

R a set of productions or rules of the form
A—p, where A is a non-terminal and 3 is a
string of symbols from (ZU N)*

S, a designated non-terminal called the start
symbol

Estimating Production Probabilities

* Set of production rules can be taken directly
from the set of rewrites in the treebank.

» Parameters can be directly estimated from
frequency counts in the treebank.

count(a —) _ count(cx — f3)

Pla=Flea)= E count(ct —> y) count(x)

