
Ensemble LearningThomas G. DietterihDepartment of Computer SieneOregon State UniversityCorvallis, Oregon 97331-3202 USAtgd�s.orst.eduSeptember 4, 2002

To appear in The Handbook of Brain Theory and Neural Networks, Seond edition, (M.A. Arbib,Ed.), Cambridge, MA: The MIT Press, 2002. http://mitpress.mit.edu

1



1 INTRODUCTION 21 Introdution\Learning" desribes many di�erent ativities ranging from CONCEPT LEARNING (q.v.) toREINFORCEMENT LEARNING (q.v.). The best-understood form of statistial learning is knownas supervised learning (see LEARNING AND STATISTICAL INFERENCE). In this setting, eahdata point onsists of a vetor of features (denoted x) and a lass label y, and it is assumed thatthere is some underlying funtion f suh that y = f(x) for eah training data point (x; y). Thegoal of the learning algorithm is to �nd a good approximation h to f that an be applied to assignlabels to new x values. The funtion h is alled a lassi�er, beause it assigns lass labels y toinput data points x. Supervised learning an be applied to many problems inluding handwritingreognition, medial diagnosis, and part-of-speeh tagging in language proessing.Ordinary mahine learning algorithms work by searhing through a spae of possible funtions,alled hypotheses, to �nd the one funtion, h, that is the best approximation to the unknownfuntion f . To determine whih hypothesis h is best, a learning algorithm an measure how well hmathes f on the training data points, and it an also assess how onsistent h is with any availableprior knowledge about the problem.As an example, onsider the problem of learning to pronoune the letter \K" in English. Con-sider the words \desk", \think", and \hook" where the \K" is pronouned, and the words \bak",\quak", and \knave" where the \K" is silent (in \bak" and \quak", we will suppose that the\C" is responsible for the \k" sound). Suppose we de�ne a vetor of features that onsists of thetwo letters prior to the \K" and the two letters that follow the \K". Then eah of these words anbe represented by the following data points:x1 x2 x3 x4 ye s +1i n +1o o +1a  �1a  �1n a �1where y = +1 if the \K" is pronouned and �1 if the \K" is silent, and where \ " denotes positionsbeyond the ends of the word.One of the most eÆient and widely-applied learning algorithms searhes the hypothesis spaeonsisting of deision trees. Figure 1 shows a deision tree that explains the data points givenabove. This tree an be used to lassify a new data point as follows. Starting at the so-alled\root" (i.e., the top) of the tree, we �rst hek whether x2 = "". If so, then we follow the left(\yes") branh to the y = �1 \leaf", whih predits that the \K" will be silent. If not, we followthe right (\no") branh to another test: Is x3 = \n". If so, then we follow the left branh to anothery = �1 leaf. If not, then we follow the right branh to the y = +1 leaf, where the tree indiatesthat the \K" should be pronouned.A deision tree learning algorithm searhes the spae of suh trees by �rst onsidering trees thattest only one feature (in this ase x2 was hosen) and making an immediate lassi�ation. Thenthey onsider expanding the tree by replaing one of the leaves by a test of a seond feature (inthis ase, the right leaf was replaed with a test of x3). Various heuristis are applied to hoosewhih test to inlude in eah iteration and when to stop growing the tree. For a good disussion ofdeision trees, see the books by Quinlan (1993) and by Breiman, et al. (1984).



2 WHY ENSEMBLE METHODS WORK 3������= ZZZZZZ~yes no ������= ZZZZZZ~yes noy = +1x3 = \n"y = �1
y = �1 x2 = \"

Figure 1: A deision tree for pronouning the letter \K". First, feature x2 is tested to see if it isthe letter \". If not, the feature x3 is tested to see if it is the letter \n". \K" is pronouned onlyif x2 is not \" and x3 is not \n".In addition to deision trees, there are many other representations for hypotheses that havebeen studied inluding PERCEPTRONS, ADALINES, and BACKPROPAGATION (q.v.), RA-DIAL BASIS FUNCTION NETWORKS (q.v.), GAUSSIAN PROCESSES (q.v.), GRAPHICALMODELS (q.v.), HELMHOLTZ MACHINES (q.v.), and SUPPORT VECTOR MACHINES (q.v.).In all ases, these algorithms �nd one best hypothesis h and output it as the \solution" to the learn-ing problem.Ensemble learning algorithms take a di�erent approah. Rather than �nding one best hypoth-esis to explain the data, they onstrut a set of hypotheses (sometimes alled a \ommittee" or\ensemble") and then have those hypotheses \vote" in some fashion to predit the label of new datapoints. More preisely, an ensemble method onstruts a set of hypotheses fh1; : : : ; hKg, hooses aset of weights fw1; : : : ; wKg and onstruts the \voted" lassi�er H(x) = w1h1(x)+ : : :+wKhK(x).The lassi�ation deision of the ombined lassi�er H is +1 if H(x) � 0 and �1 otherwise.Experimental evidene has shown that ensemble methods are often muh more aurate thanany single hypothesis. Freund and Shapire (1996) showed improved performane in 22 benhmarkproblems, equal performane in one problem, and worse performane in four problems. These andother studies are summarized in Dietterih (1997).2 Why Ensemble Methods WorkLearning algorithms that output only a single hypothesis su�er from three problems that an bepartly overome by ensemble methods: the statistial problem, the omputational problem, andthe representation problem.The statistial problem arises when the learning algorithm is searhing a spae of hypothesesthat is too large for the amount of available training data. In suh ases, there may be severaldi�erent hypotheses that all give the same auray on the training data, and the learning algorithmmust hoose one of these to output. There is a risk that the hosen hypothesis will not preditfuture data points well. A simple vote of all of these equally-good lassi�ers an redue this risk.The omputational problem arises when the learning algorithm annot guarantee to �nd thebest hypothesis within the hypothesis spae. In neural network and deision tree algorithms, for



3 REVIEW OF ENSEMBLE ALGORITHMS 4example, the task of �nding the hypothesis that best �ts the training data is omputationallyintratable, so heuristi methods must be employed. These heuristis (suh as gradient desent)an get stuk in loal minima and hene fail to �nd the best hypothesis. As with the statistialproblem, a weighted ombination of several di�erent loal minima an redue the risk of hoosingthe wrong loal minimum to output.Finally, the representational problem arises when the hypothesis spae does not ontain anyhypotheses that are good approximations to the true funtion f . In some ases, a weighted sum ofhypotheses expands the spae of funtions that an be represented. Hene, by taking a weightedvote of hypotheses, the learning algorithm may be able to form a more aurate approximation tof . A learning algorithm that su�ers from the statistial problem is said to have high \variane".An algorithm that exhibits the omputational problem is sometimes desribed has having \om-putational variane". And a learning algorithm that su�ers from the representational problem issaid to have high \bias". Hene, ensemble methods an redue both the bias and the variane oflearning algorithms. Experimental measurements of bias and variane have on�rmed this.3 Review of Ensemble AlgorithmsEnsemble learning algorithms work by running a \base learning algorithm" multiple times, andforming a vote out of the resulting hypotheses. There are two main approahes to designingensemble learning algorithms.The �rst approah is to onstrut eah hypothesis independently in suh a way that the resultingset of hypotheses is aurate and diverse|that is, eah individual hypothesis has a reasonably lowerror rate for making new preditions and yet the hypotheses disagree with eah other in many oftheir preditions. If suh an ensemble of hypotheses an be onstruted, it is easy to see that it willbe more aurate than any of its omponent lassi�ers, beause the disagreements will \anel out."Suh ensembles an overome both the statistial and omputational problems disussed above.The seond approah to designing ensembles is to onstrut the hypotheses in a oupled fashionso that the weighted vote of the hypotheses gives a good �t to the data. This approah diretlyaddresses the representational problem disussed above.We will disuss eah of these two approahes in turn.3.1 Methods for Independently Construting EnsemblesOne way to fore a learning algorithm to onstrut multiple hypotheses is to run the algorithmseveral times and provide it with somewhat di�erent training data in eah run. For example,Breiman (1996) introdued the Bagging (\Bootstrap Aggregating") method whih works as follows.Given a set of m training data points, Bagging hooses in eah iteration a set of data points of sizem by sampling uniformly with replaement from the original data points. This reates a resampleddata set in whih some data points appear multiple times and other data points do not appear atall. If the learning algorithm is unstable|that is, if small hanges in the training data lead to largehanges in the resulting hypothesis|then Bagging will produe a diverse ensemble of hypotheses.A seond way to fore diversity is to provide a di�erent subset of the input features in eahall to the learning algorithm. For example, in a projet to identify volanoes on Venus, Cherkauer(1996) trained an ensemble of 32 neural networks. The 32 networks were based on 8 di�erent



3 REVIEW OF ENSEMBLE ALGORITHMS 5subsets of the 119 available input features and 4 di�erent network sizes. The input feature subsetswere seleted (by hand) to group together features that were based on di�erent image proessingoperations (suh as prinipal omponent analysis and the fast fourier transform). The resultingensemble lassi�er was signi�antly more aurate than any of the individual neural networks.A third way to fore diversity is to manipulate the output labels of the training data. Dietterihand Bakiri (1995) desribe a tehnique alled error-orreting output oding. Suppose that thenumber of lasses, C, is large. Then new learning problems an be onstruted by randomlypartioning the C lasses into two subsets Ak and Bk. The input data an then be re-labeled sothat any of the original lasses in set Ak are given the derived label �1 and the original lasses inset Bk are given the derived label 1. This relabeled data is then given to the learning algorithm,whih onstruts a lassi�er hk. By repeating this proess K times (generating di�erent subsetsAk and Bk), an ensemble of K lassi�ers h1; : : : ; hK is obtained.Now given a new data point x, how should it be lassi�ed? The answer is to have eah hklassify x. If hk(x) = �1, then eah lass in Ak reeives a vote. If hk(x) = 1, then eah lass inBk reeives a vote. After eah of the K lassi�ers has voted, the lass with the highest number ofvotes is seleted as the predition of the ensemble.An equivalent way of thinking about this method is that eah lass j is enoded as an K-bitodeword Cj , where bit k is 1 if j 2 Bk and 0 otherwise. The k-th learned lassi�er attemptsto predit bit k of these odewords (a predition of �1 is treated as a binary value of 0). Whenthe L lassi�ers are applied to lassify a new point x, their preditions are ombined into a K-bitbinary string. The ensemble's predition is the lass j whose odeword Cj is losest (measuredby the number of bits that agree) to the K-bit output string. Methods for designing good error-orreting odes an be applied to hoose the odewords Cj (or equivalently, subsets Ak and Bk).Dietterih and Bakiri report that this tehnique improves the performane of both deision-treeand bakpropagation learning algorithms on a variety of diÆult lassi�ation problems.A fourth way of generating aurate and diverse ensembles is to injet randomness into thelearning algorithm. For example, the bakpropagation algorithm an be run many times, startingeah time from a di�erent random setting of the weights. Deision tree algorithms an be ran-domized by adding randomness to the proess of hoosing whih feature and threshold to split on.Dietterih (2000) showed that randomized trees gave signi�antly improved performane in 14 outof 33 benhmark tasks (and no hange in the remaining 19 tasks).Ho (1998) introdued the \random subspae method" for growing olletions of deision trees(\deision forests"). This method hooses a random subset of the features at eah node of the tree,and onstrains the tree-growing algorithm to hoose its splitting rule from among this subset. Shereports improved performane in 16 benhmark datasets. Breiman (2001) ombines Bagging withthe random subspae method to grow random deision forests that give exellent performane.3.2 Methods for Coordinated Constrution of EnsemblesIn all of the methods desribed above, eah hypothesis hk in the ensemble is onstruted inde-pendently of the others by manipulating the inputs, the outputs, the features, or by injetingrandomness. Then an unweighted vote of the hypotheses determines the �nal lassi�ation of adata point.A ontrasting view of an ensemble is that it is an additive model|that is, it predits the lassof a new data point by taking an weighted sum of a set of omponent models. This view suggests



3 REVIEW OF ENSEMBLE ALGORITHMS 6developing algorithms that hoose the omponent models and the weights so that the weighted sum�ts the data well. In this approah, the hoie of one omponent hypothesis inuenes the hoieof other hypotheses and of the weights assigned to them. In statistis, suh ensembles are knownas generalized additive models (Hastie & Tibshirani, 1990).The Adaboost algorithm introdued by Freund and Shapire (1996, 1997) is an extremely e�e-tive method for onstruting an additive model. It works by inrementally adding one hypothesisat a time to an ensemble. Eah new hypothesis is onstruted by a learning algorithm that seeksto minimize the lassi�ation error on a weighted training data set. The goal is to onstrut aweighted sum of hypotheses suh that H(xi) = Pk wkhk(xi) has the same sign as yi, the orretlabel of xi.The algorithm operates as follows. Let dk(xi) be the weight on data point xi during iterationk of the algorithm. Initially, all training data points i are given a weight d1(xi) = 1=m, where m isthe number of data points. In iteration k, the underlying learning algorithm onstruts hypothesishk to minimize the weighted training error. The resulting weighted error is r = Pi d(xi)yihk(xi),where hk(xi) is the label predited by hypothesis hk. The weight assigned to this hypothesis isomputed by wk = 12 ln�1 + r1� r� :To ompute the weights for the next iteration, the weight of training data point i is set todk+1(xi) = dk(xi)exp(�wkyihk(xi))Zk ;where Zk is hosen to make dk+1 sum to 1.Breiman (1997) showed that this algorithm is a form of gradient optimization in funtion spaewith the goal of minimizing the objetive funtionJ(H) =Xi exp(�yiH(xi)):The quantity yiH(xi) is alled the margin, beause it is the amount by whih xi is orretlylassi�ed. If the margin is positive, then the sign of H(xi) agrees with the sign of yi. Minimizing Jauses the margin to be maximized. Friedman, Hastie, and Tibshirani (2000) expand on Breiman'sanalysis from a satistial perspetive.In most experimental studies (Freund & Shapire, 1996; Bauer & Kohavi, 1999; Dietterih,2000), Adaboost (and algorithms based on it) gives the best performane on the vast majority ofdata sets. The primary exeption are data sets in whih there is a high level of mislabeled trainingdata points. In suh ases, Adaboost will put very high weights on the noisy data points and learnvery poor lassi�ers. Current researh is fousing on methods for extending Adaboost to work inhigh noise settings.The exat reasons for Adaboost's suess are not fully understood. One line of explanationis based on the margin analysis developed by Vapnik (1995) and extended by Shapire, Freund,Barlett, and Lee (1998). This work shows that the error of an ensemble on new data points isbounded by the fration of training data points for whih the margin is less than some quantity� > 0 plus a term that grows as s dm log(m=d)� ;



4 DISCUSSION 7ignoring onstant fators and some log terms. In this formula, m is the number of training datapoints, and d is a measure of the expressive power of the hypothesis spae from whih the individuallassi�ers are drawn, known as the VC-dimension. The value of � an be hosen to minimize thevalue of this expression.Intuitively, this formula says that if the ensemble learning algorithm an ahieve a large \marginof safety" on eah training data point while using only a weighted sum of simple lassi�ers, then theresulting voted lassi�er is likely to be very aurate. Experimentally, Adaboost has been shownto be very e�etive at inreasing the margins on the training data points, and hene, this resultsuggests that Adaboost will make few errors on new data points.There are three ways in whih this analysis has been ritiized. First, the bound is not tight,so it may be hiding the real explanation for Adaboost's suess. Seond, even when Adaboost isapplied to large deision trees and neural networks, it is observed to work very well even thoughthese representations have high VC-dimension. Third, it is possible to design algorithms that aremore e�etive than Adaboost at inreasing the margin on the training data, but these algorithmsexhibit worse performane than Adaboost when applied to lassify new data points.3.3 Related Non-Ensemble Learning MethodsIn addition to the ensemble methods desribed here, there are other non-ensemble learning algo-rithms that similar. For example, any method for onstruting a lassi�er as a weighted sum ofbasis funtions (e.g., see RADIAL BASIS FUNCTION NETWORKS) an be viewed as an additiveensemble where eah individual basis funtion forms one of the hypotheses.Another lose-related learning algorithm is the Hierarhial Mixture of Experts method (seeMODULAR AND HIERARCHICAL LEARNING SYSTEMS). In a hierarhial mixture, individualhypotheses are ombined by a gating network whih deides|based on the features of the datapoint|what weights should be employed. This di�ers from Adaboost and other additive ensembleswhere the weights are determined one during training and then held onstant thereafter.4 DisussionThe majority of researh into ensemble methods has foused on onstruting ensembles of deisiontrees. Deision tree learning algorithms are known to su�er from high variane, beause they makea asade of hoies (of whih variable and value to test at eah internal node in the deision tree)suh that one inorret hoie has an impat on all subsequent deisions. In addition, beause theinternal nodes of the tree test only a single variable, this reates axis-parallel retangular deisionregions whih an have high bias. Consequently, ensembles of deision tree lassi�ers perform muhbetter than individual deision trees. Reent experiments suggest that Breiman's ombination ofbagging and the random subspae method is the method of hoie for deision trees | it givesexellent auray and works well even when there is substantial noise in the training data.If the base learning algorithm produes less expressive hypotheses than deision trees, then theAdaboost method is reommended. Many experiments have employed so-alled \deision stumps",whih are deision trees with only one internal node. In order to learn omplex funtions withdeision stumps, it is important to exploit Adaboost's ability to diretly onstrut an additivemodel. This usually gives better results than Bagging and other auray/diversity methods.Similar reommendations apply to ensembles onstruted using the Naive Bayes and Fisher's linear
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