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Logistic Regression

• Assumes a parametric form for directly estimating 
P(Y | X). For binary concepts, this is:∑ =
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• Equivalent to a one-layer backpropagation neural net.
– Logistic regression is the source of the sigmoid function 

used in backpropagation.

– Objective function for training is somewhat different.
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Logistic Regression as a Log-Linear Model

• Logistic regression is basically a linear model, which 
is demonstrated by taking logs.
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• Also called a maximum entropy model(MaxEnt ) 
because it can be shown that standard training for 
logistic regression gives the distribution with maximum 
entropy that is consistent with the training data.
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Logistic Regression Training

• Weights are set during training to maximize the 
conditional data likelihood :

where D is the set of training examples and Yd and 
Xd denote, respectively, the values of Y and X for 
example d.
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• Equivalently viewed as maximizing the 
conditional log likelihood (CLL)∑
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Logistic Regression Training

• Like neural-nets, can use standard gradient 
descent to find the parameters (weights) that 
optimize the CLL objective function.

• Many other more advanced training 
methods are possible to speed convergence.
– Conjugate gradient

– Generalized Iterative Scaling (GIS)

– Improved Iterative Scaling (IIS)

– Limited-memory quasi-Newton (L-BFGS)
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Preventing Overfitting in Logistic Regression

• To prevent overfitting, one can use regularization
(a.k.a. smoothing) by penalizing large weights by 
changing the training objective:
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• This can be shown to be equivalent to assuming a 
Guassian prior for W with zero mean and a 
variance related to 1/λ.

Where λ is a constant that determines the amount of smoothing
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Multinomial Logistic Regression

• Logistic regression can be generalized to 
multi-class problems (where Y has a 
multinomial distribution).

• Effectively constructs a linear classifier for 
each category.
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Relation Between
Naïve Bayes and Logistic Regression

• Naïve Bayes with Gaussian distributions for features (GNB), 
can be shown to given the same functional form for the 
conditional distribution P(Y|X).
– But converse is not true, so Logistic Regression makes a weaker 

assumption.

• Logistic regression is a discriminative rather than generative 
model, since it models the conditional distribution P(Y|X) and 
directly attempts to fit the training data for predicting Y from 
X. Does not specify a full joint distribution.

• When conditional independence is violated, logistic 
regression gives better generalization if it is given sufficient
training data.

• GNB converges to accurate parameter estimates faster (O(log
n) examples for n features) compared to Logistic Regression 
(O(n) examples).
– Experimentally, GNB is better when training data is scarce, logistic 

regression is better when it is plentiful.
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Graphical Models

• If no assumption of independence is made, then an 
exponential number of parameters must be estimated for 
sound probabilistic inference.

• No realistic amount of training data is sufficient to estimate 
so many parameters.

• If a blanket assumption of conditional independence is made, 
efficient training and inference is possible, but such a strong 
assumption is rarely warranted.

• Graphical modelsuse directed or undirected graphs over a 
set of random variables to explicitly specify variable 
dependencies and allow for less restrictive independence 
assumptions while limiting the number of parameters that 
must be estimated.
– Bayesian Networks: Directed acyclic graphs that indicate causal 

structure.
– Markov Networks : Undirected graphs that capture general 

dependencies.
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Bayesian Networks

• Directed Acyclic Graph (DAG)
– Nodes are random variables

– Edges indicate causal influences

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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Conditional Probability Tables

• Each node has a conditional probability table (CPT) that 
gives the probability of each of its values given every possible
combination of values for its parents (conditioning case).
– Roots (sources) of the DAG that have no parents are given prior 

probabilities.

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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CPT Comments

• Probability of false not given since rows 
must add to 1.

• Example requires 10 parameters rather than 
25–1=31 for specifying the full joint 
distribution.

• Number of parameters in the CPT for a 
node is exponential in the number of parents 
(fan-in).
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Joint Distributions for Bayes Nets

• A Bayesian Network implicitly defines a joint 
distribution.
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• Therefore an inefficient approach to inference is:
– 1) Compute the joint distribution using this equation.
– 2) Compute any desired conditional probability using 

the joint distribution.
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Naïve Bayes as a Bayes Net

• Naïve Bayes is a simple Bayes Net

Y

X1 X2
… Xn

• Priors P(Y) and conditionals P(Xi|Y) for 
Naïve Bayes provide CPTs for the network.
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Bayes Net Inference

• Given known values for some evidence variables, 
determine the posterior probability of some query 
variables.

• Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

??? John calls 90% of the time there
is an Alarm and the Alarm detects
94% of Burglaries so people
generally think it should be fairly high.

However, this ignores the prior
probability of John calling. 
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Bayes Net Inference

• Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

??? John also calls 5% of the time when there
is no Alarm. So over 1,000 days we 
expect 1 Burglary and John will probably 
call. However, he will also call with a 
false report 50 times on average. So the 
call is about 50 times more likely a false 
report: P(Burglary | JohnCalls) ≈ 0.02
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Bayes Net Inference

• Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

??? Actual probability of Burglary is 0.016 
since the alarm is not perfect (an 
Earthquake could have set it off or it 
could have gone off on its own). On the 
other side, even if there was not an 
alarm and John called incorrectly, there 
could have been an undetected Burglary 
anyway, but this is unlikely.          
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Complexity of Bayes Net Inference

• In general, the problem of Bayes Net inference is 
NP-hard (exponential in the size of the graph).

• For singly-connected networksor polytrees in 
which there are no undirected loops, there are linear-
time algorithms based on belief propagation.
– Each node sends local evidence messages to their children 

and parents.
– Each node updates belief in each of its possible values 

based on incoming messages from it neighbors and 
propagates evidence on to its neighbors.

• There are approximations to inference for general 
networks based on loopy belief propagationthat 
iteratively refines probabilities that converge to 
accurate values in the limit.
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Belief Propagation Example

• λ messages are sent from children to parents 
representing abductive evidence for a node.

• π messages are sent from parents to children 
representing causal evidence for a node.

Burglary Earthquake

Alarm

JohnCalls MaryCalls

λ λ λ πAlarm

Burglary Earthquake

MaryCalls
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Markov Networks

• Undirected graph over a set of random 
variables, where an edge represents a 
dependency.

• The Markov blanket of a node, X,  in a 
Markov Net is the set of its neighbors in the 
graph (nodes that have an edge connecting 
to X).

• Every node in a Markov Net is 
conditionally independent of every other 
node given its Markov blanket.
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Distribution for a Markov Network

• The distribution of a Markov net is most compactly 
described in terms of a set of potential functions, φk, for 
each clique, k, in the graph.

• For each joint assignment of values to the variables in 
clique k, φk assigns a non-negative real value that 
represents the compatibility of these values.

• The joint distribution of a Markov is then defined by:
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Inference in Markov Networks

• Inference in general Markov nets is #P 
complete.

• Approximation algorithms include:
– Markov Chain Monte Carlo (MCMC)

– Loopy belief propagation
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Bayes Nets vs. Markov Nets

• Bayes nets represent a subclass of joint 
distributions that capture non-cyclic causal 
dependencies between variables.

• A Markov net can represent any joint 
distribution.
– If network is fully connected then there is one 

clique that is includes all of the variables and 
whose potential function directly encodes the 
full joint distribution. 
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Learning Graphical Models

• Structure Learning: Learn the graphical 
structure of the network.

• Parameter Learning: Learn the real-
valued parameters of the network 
– CPTs for Bayes Nets

– Potential functions for Markov Nets
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Structure Learning

• Use greedy top-down search through the space of 
networks, considering adding each possible edge 
one at a time and picking the one that maximizes a 
statistical evaluation metric that measures fit to the 
training data.

• Alternative is to test all pairs of nodes to find ones 
that are statistically correlated and adding edges 
accordingly.

• Bayes net learning requires determining the 
direction of causal influences.

• Special algorithms for limited graph topologies.
– TAN (Tree Augmented Naïve-Bayes) for learning 

Bayes nets that are trees.
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Parameter Learning

• If values for all variables are available during 
training, then parameter estimates can be directly 
estimated using frequency counts over the training 
data.
– Must smooth estimates to compensate for limited 

training data.
• If there are hidden variables, some form of 

gradient descent or Expectation Maximization 
(EM) must be used to estimate distributions for 
hidden variables.
– Like setting the weights feeding hidden units in 

backpropagation neural nets.
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Statistical Relational Learning

• Expand graphical model learning approach to handle 
instances more expressive than feature vectors that include 
arbitrary numbers of objects with properties and relations 
between them.
– Probabilistic Relational Models (PRMs)
– Stochastic Logic Programs (SLPs)
– Bayesian Logic Programs (BLPs)
– Relational Markov Networks (RMNs)
– Markov Logic Networks (MLNs)
– Other TLAs

• Collective classification: Classify multiple dependent 
objects based on both and object’s properties as well as the 
class of other related objects.
– Get beyond IID assumption for instances
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Collective Classification 
of Web Pages using RMNs

[Taskar, Abbeel & Koller 2002]
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Conclusions

• Bayesian learning methods are firmly based on 
probability theory and exploit advanced methods 
developed in statistics.

• Naïve Bayes is a simple generative model that works 
fairly well in practice.

• Logistic Regression is a discriminative classifier that 
directly models the conditional distribution P(Y|X).

• Graphical models allow specifying limited 
dependencies using graphs.
– Bayes Nets: DAG
– Markov Nets: Undirected Graph


