
1

1

CS 391L: Machine Learning:
Ensembles

Raymond J. Mooney
University of Texas at Austin

2

Learning Ensembles

• Learn multiple alternative definitions of a concept using
different training data or different learning algorithms.

• Combine decisions of multiple definitions, e.g. using
weighted voting.

Training Data

Data1 Data mData2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Learner1 Learner2 Learner m⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model1 Model2 Model m⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model Combiner Final Model

3

Value of Ensembles

• When combing multiple independent and
diverse decisions each of which is at least
more accurate than random guessing,
random errors cancel each other out, correct
decisions are reinforced.

• Human ensembles are demonstrably better
– How many jelly beans in the jar?: Individual

estimates vs. group average.

– Who Wants to be a Millionaire: Expert friend
vs. audience vote.

4

Homogenous Ensembles

• Use a single, arbitrary learning algorithm but
manipulate training data to make it learn multiple
models.
– Data1 ≠ Data2 ≠ … ≠ Data m
– Learner1 = Learner2 = … = Learner m

• Different methods for changing training data:
– Bagging: Resample training data
– Boosting: Reweight training data
– DECORATE: Add additional artificial training data

• In WEKA, these are called meta-learners, they
take a learning algorithm as an argument (base
learner) and create a new learning algorithm.

5

Bagging

• Create ensembles by repeatedly randomly resampling the
training data (Brieman, 1996).

• Given a training set of size n, create m samples of size n by
drawing n examples from the original data, with
replacement.
– Each bootstrap sample will on average contain 63.2% of the

unique training examples, the rest are replicates.

• Combine the m resulting models using simple majority
vote.

• Decreases error by decreasing the variance in the results
due to unstable learners, algorithms (like decision trees)
whose output can change dramatically when the training
data is slightly changed.

6

Boosting

• Originally developed by computational learning theorists
to guarantee performance improvements on fitting training
data for a weak learner that only needs to generate a
hypothesis with a training accuracy greater than 0.5
(Schapire, 1990).

• Revised to be a practical algorithm, AdaBoost, for building
ensembles that empirically improves generalization
performance (Freund & Shapire, 1996).

• Examples are given weights. At each iteration, a new
hypothesis is learned and the examples are reweighted to
focus the system on examples that the most recently
learned classifier got wrong.

2

7

Boosting: Basic Algorithm

• General Loop:
Set all examples to have equal uniform weights.
For t from 1 to T do:

Learn a hypothesis, ht, from the weighted examples
Decrease the weights of examples ht classifies correctly

• Base (weak) learner must focus on correctly
classifying the most highly weighted examples
while strongly avoiding over-fitting.

• During testing, each of the T hypotheses get a
weighted vote proportional to their accuracy on
the training data.

8

AdaBoost Pseudocode

TrainAdaBoost(D, BaseLearn)
For each example di in D let its weight wi=1/|D|
Let H be an empty set of hypotheses
For t from 1 to T do:

Learn a hypothesis, ht, from the weighted examples: ht=BaseLearn(D)
Add ht to H
Calculate the error, εt, of the hypothesis ht as the total sum weight of the

examples that it classifies incorrectly.
If εt > 0.5 then exit loop, else continue.
Let βt = εt / (1 –εt)
Multiply the weights of the examples that ht classifies correctly by βt

Rescale the weights of all of the examples so the total sum weight remains 1.
Return H

TestAdaBoost(ex, H)
Let each hypothesis, ht, in H vote for ex’s classification with weight log(1/ βt)
Return the class with the highest weighted vote total.

9

Learning with Weighted Examples

• Generic approach is to replicate examples in the
training set proportional to their weights (e.g. 10
replicates of an example with a weight of 0.01 and
100 for one with weight 0.1).

• Most algorithms can be enhanced to efficiently
incorporate weights directly in the learning
algorithm so that the effect is the same (e.g.
implement the WeightedInstancesHandler
interface in WEKA).

• For decision trees, for calculating information
gain, when counting example i, simply increment
the corresponding count by wi rather than by 1.

10

Experimental Results on Ensembles
(Freund & Schapire, 1996; Quinlan, 1996)

• Ensembles have been used to improve
generalization accuracy on a wide variety of
problems.

• On average, Boosting provides a larger increase in
accuracy than Bagging.

• Boosting on rare occasions can degrade accuracy.
• Bagging more consistently provides a modest

improvement.
• Boosting is particularly subject to over-fitting

when there is significant noise in the training data.

11

DECORATE
(Melville & Mooney, 2003)

• Change training data by adding new
artificial training examples that encourage
diversity in the resulting ensemble.

• Improves accuracy when the training set is
small, and therefore resampling and
reweighting the training set has limited
ability to generate diverse alternative
hypotheses.

12

Base Learner

Overview of DECORATE

Training Examples

Artificial Examples

Current Ensemble

-
-
+

+
+

C1

+
+
-
+
-

3

13

C1

Base Learner

Overview of DECORATE

Training Examples

Artificial Examples

Current Ensemble

-
-
+
-
+

-
-
+

+
+

C2
+
-
-
-
+

14

C1

C2Base Learner

Overview of DECORATE

Training Examples

Artificial Examples

Current Ensemble

-
+
+
+
-

-
-
+

+
+

C3

15

Ensembles and Active Learning

• Ensembles can be used to actively select
good new training examples.

• Select the unlabeled example that causes the
most disagreement amongst the members of
the ensemble.

• Applicable to any ensemble method:
– QueryByBagging
– QueryByBoosting
– ActiveDECORATE

1616DECORATE

Active-DECORATE

Training Examples

Unlabeled Examples

Current Ensemble

-
-
+

+
-

C1

C2

C3

C4

Utility = 0.1

+

+

+

+

1717DECORATE

Active-DECORATE

Training Examples

Unlabeled Examples

Current Ensemble

-
-
+

+
-

C1

C2

C3

C4

+

+

-

-

Utility = 0.1

0.9

0.3

0.2

0.5

+

Acquire Label

18

Issues in Ensembles

• Parallelism in Ensembles: Bagging is easily
parallelized, Boosting is not.

• Variants of Boosting to handle noisy data.
• How “weak” should a base-learner for Boosting

be?
• What is the theoretical explanation of boosting’s

ability to improve generalization?
• Exactly how does the diversity of ensembles affect

their generalization performance.
• Combining Boosting and Bagging.

