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Evaluating Inductive Hypotheses

• Accuracy of hypotheses on training data is 
obviously biased since the hypothesis was 
constructed to fit this data.

• Accuracy must be evaluated on an 
independent (usually disjoint) test set.

• The larger the test set is, the more accurate 
the measured accuracy and the lower the 
variance observed across different test sets.
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Variance in Test Accuracy

• Let errorS(h) denote the percentage of examples in an 
independently sampled test set S of size n that are 
incorrectly classified by  hypothesis h.

• Let errorD(h) denote the true error rate for the overall data 
distribution D.

• When n is at least 30, the central limit theorem ensures that 
the distribution of errorS(h) for different random samples 
will be closely approximated by a normal (Guassian) 
distribution.
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Comparing Two Learned Hypotheses

• When evaluating two hypotheses, their observed 
ordering with respect to accuracy may or may not 
reflect the ordering of their true accuracies.
– Assume h1 is tested on test set S1 of size n1

– Assume h2 is tested on test set S2 of size n2
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Observe h1 more accurate than h2
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Comparing Two Learned Hypotheses

• When evaluating two hypotheses, their observed 
ordering with respect to accuracy may or may not 
reflect the ordering of their true accuracies.
– Assume h1 is tested on test set S1 of size n1

– Assume h2 is tested on test set S2 of size n2
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Observe h1 less accurate than h2 6

Statistical Hypothesis Testing

• Determine the probability that an empirically observed 
difference in a statistic could be due purely to random 
chance assuming there is no true underlying difference.

• Specific tests for determining the significance of the 
difference between two means computed from two 
samples gathered under different conditions.

• Determines the probability of the null hypothesis, that the 
two samples were actually drawn from the same 
underlying distribution.

• By scientific convention, we reject the null hypothesisand 
say the difference is statistically significantif the 
probability of the null hypothesis is less than 5% (p < 0.05) 
or alternatively we accept that the difference is due to an 
underlying cause with a confidenceof (1 – p).
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One-sided vs Two-sided Tests

• One-sided test assumes you expected a 
difference in one direction (A is better than 
B) and the observed difference is consistent 
with that assumption.

• Two-sided test does not assume an expected 
difference in either direction.

• Two-sided test is more conservative, since it 
requires a larger difference to conclude that 
the difference is significant.
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Z-Score Test for Comparing 
Learned Hypotheses

• Assumes h1 is tested on test set S1 of size n1 andh2
is tested on test set S2 of size n2.

• Compute the difference between the accuracy of 
h1 and h2

• Compute the standard deviation of the sample 
estimate of the difference.

• Compute the z-score for the difference
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Z-Score Test for Comparing 
Learned Hypotheses (continued)

• Determine the confidence in the difference by 
looking up the highest confidence, C, for the given 
z-score in a table. 

• This gives the confidence for a two-tailed test, for 
a one tailed test, increase the confidence half way 
towards 100%

2.582.331.961.641.281.000.67z-score
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Sample Z-Score Test 1

Assume we test two hypotheses on different test sets of size 
100 and observe:
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Confidence for two-tailed test: 90%
Confidence for one-tailed test: (100 – (100 – 90)/2) = 95%
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Sample Z-Score Test 2

Assume we test two hypotheses on different test sets of size 
100 and observe:
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Confidence for two-tailed test: 50%
Confidence for one-tailed test: (100 – (100 – 50)/2) = 75%
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Z-Score Test Assumptions

• Hypotheses can be tested on different test sets; if 
same test set used, stronger conclusions might be 
warranted.

• Test sets have at least 30 independently drawn 
examples.

• Hypotheses were constructed from  independent 
training sets.

• Only compares two specific hypotheses regardless 
of the methods used to construct them. Does not 
compare the underlying learning methods in 
general.
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Comparing Learning Algorithms

• Comparing the average accuracy of hypotheses produced 
by two different learning systems is more difficult since 
we need to average over multiple training sets. Ideally, we 
want to measure:

where LX(S) represents the hypothesis learned by method L
from training data S.

• To accurately estimate this, we need to average over 
multiple, independent training and test sets.

• However, since labeled data is limited, generally must 
average over multiple splits of the overall data set into 
training and test sets.
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K-Fold Cross Validation

Randomly partition data D into k disjoint equal-sized 
subsets P1…Pk

For i from 1 to k do:
Use Pi for the test set and remaining data for training

Si = (D – Pi)
hA = LA(Si)
hB = LB(Si)δi = errorPi(hA) – errorPi(hB) 

Return the average difference in error:∑
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K-Fold Cross Validation Comments

• Every example gets used as a test example once 
and as a training example k–1 times.

• All test sets are independent; however, training 
sets overlap significantly.

• Measures accuracy of hypothesis generated for 
[(k–1)/k]⋅|D| training examples.

• Standard method is 10-fold.
• If k is low, not sufficient number of train/test 

trials; if k is high, test set is small and test variance 
is high and run time is increased.

• If k=|D|, method is called leave-one-outcross 
validation.
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Significance Testing

• Typically k<30, so not sufficient trials for a z test.
• Can use (Student’s) t-test, which is more accurate when 

number of trials is low.
• Can use a paired t-test, which can determine smaller 

differences to be significant when the training/sets sets are 
the same for both systems.

• However, both z and t test’s assume the trials are 
independent. Not true for k-fold cross validation:
– Test sets are independent
– Training sets are not independent

• Alternative statistical tests have been proposed, such as 
McNemar’s test.

• Although no test is perfect when data is limited and 
independent trials are not practical, some statistical test 
that accounts for variance is desirable.
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Sample Experimental Results
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Experiment 2
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Which experiment provides better evidence that SystemA is better than SystemB?
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Learning Curves

• Plots accuracy vs. size of training set.

• Has maximum accuracy (Bayes optimal) nearly been 
reached or will more examples help?

• Is one system better when training data is limited?

• Most learners eventually converge to Bayes optimal given 
sufficient training examples.
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Cross Validation Learning Curves

Split data into k equal partitions
For trial i = 1 to k do:

Use partition i for testing and the union of all other partitions for training.
For each desired point p on the learning curve do:

For each learning system L
Train L on the first p examples of the training set and record

training time, training accuracy, and learned concept complexity.
Test L on the test set, recording testing time and test accuracy.

Compute average for each performance statistic across k trials.
Plot curves for any desired performance statistic versus training set size.
Use a paired t-test to determine significance of any differences between any 

two systems for a given training set size.
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Noise Curves

• Plot accuracy versus noise level to determine 
relative resistance to noisy training data.

• Artificially add category or feature noise by 
randomly replacing some specified fraction of 
category or feature values with random values. 
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Experimental Evaluation Conclusions

• Good experimental methodology is important to evaluating 
learning methods.

• Important to test on a variety of domains to demonstrate a 
general bias that is useful for a variety of problems. 
Testing on 20+ data sets is common.

• Variety of freely available data sources
– UCI Machine Learning Repository 

http://www.ics.uci.edu/~mlearn/MLRepository.html
– KDD Cup  (large data sets for data mining)                      

http://www.kdnuggets.com/datasets/kddcup.html
– CoNLL Shared Task  (natural language problems)                       

http://www.ifarm.nl/signll/conll/

• Data for real problems is preferable to artificial problems 
to demonstrate a useful bias for real-world problems.

• Many available datasets have been subjected to significant 
feature engineering to make them learnable.


