CS 391L: Machine Learning: Bayesian Learning: Naïve Bayes

Raymond J. Mooney University of Texas at Austin

• The probability of disjunction is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

 $A \wedge B$

Independence

- A and B are *independent* iff: P(A | B) = P(A)These two constraints are logically equivalent P(B | A) = P(B)
- Therefore, if *A* and *B* are independent:

$$P(A | B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \land B) = P(A)P(B)$$

Bayes Theorem

 $P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$

Simple proof from definition of conditional probability:

$$P(H | E) = \frac{P(H \land E)}{P(E)} \quad (\text{Def. cond. prob.})$$

$$P(E | H) = \frac{P(H \land E)}{P(H)} \quad (\text{Def. cond. prob.})$$

$$P(H \land E) = P(E | H)P(H)$$

QED: $P(H | E) = \frac{P(E | H)P(H)}{P(E)}$

Bayesian Categorization
Determine category of
$$x_k$$
 by determining for each y_i
 $P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$
 $P(X=x_k)$ can be determined since categories are
complete and disjoint.
 $\sum_{i=1}^{m} P(Y = y_i | X = x_k) = \sum_{i=1}^{m} \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)} = 1$

 $P(X = x_k) = \sum_{i=1}^{m} P(Y = y_i) P(X = x_k | Y = y_i)$

- Need to know:
 - Priors: $P(Y=y_i)$
 - Conditionals: $P(X=x_k | Y=y_i)$
- $P(Y=y_i)$ are easily estimated from data. - If n_i of the examples in D are in y_i then $P(Y=y_i) = n_i / |D|$
- Too many possible instances (e.g. 2^n for binary features) to estimate all $P(X=x_k | Y=y_i)$.
- Still need to make some sort of independence assumptions about the features to make learning tractable.

Naïve Bayesian Categorization

• If we assume features of an instance are independent **given the category** (*conditionally independent*).

 $P(X | Y) = P(X_1, X_2, \dots X_n | Y) = \prod P(X_i | Y)$

- Therefore, we then only need to know $P(X_i | Y)$ for each possible pair of a feature-value and a category.
- If *Y* and all *X_i* and binary, this requires specifying only 2*n* parameters:

13

- $P(X_i = \text{true} | Y = \text{true})$ and $P(X_i = \text{true} | Y = \text{false})$ for each X_i - $P(X_i = \text{false} | Y) = 1 - P(X_i = \text{true} | Y)$
- Compared to specifying 2ⁿ parameters without any independence assumptions.

Probability	positive	negative			
P(Y)	0.5	0.5			
P(small Y)	0.4	0.4	1		
P(medium Y)	0.1	0.2			
P(large Y)	0.5	0.4	Test Instance: <medium ,red,="" circle=""></medium>		
P(red Y)	0.9	0.3			
$P(blue \mid Y)$	0.05	0.3	1		
P(green Y)	0.05	0.4			
P(square Y)	0.05	0.4			
P(triangle Y)	0.05	0.3			
$P(circle \mid Y)$	0.9	0.3			

		Prol	oabili	ty Est	timation I	Example	\$
•							
Ex	Size	Color	Shape	Category	Probability	positive	negative
1	small	red	circle	positive	P(Y) P(small Y)	0.5	0.5
	_				P(medium Y)	0.0	0.0
2	large	red	circle	positive	P(large Y)	0.5	0.5
3	small	red	triangle	negitive	P(red Y)	1.0	0.5
				-	P(blue Y)	0.0	0.5
4	large	blue	circle	negitive	P(green Y)	0.0	0.0
					P(square Y)	0.0	0.0
Test Instance X: <medium, circle="" red,=""></medium,>				<i>.</i>	P(triangle Y)	0.0	0.5
				cle>	P(circle Y)	1.0	0.5
P(j P(r	positive	(X) = 0.5 (X) = 0.5	* 0.0 * 1 * 0 0 * 0	.0 * 1.0 / 1	P(X) = 0 $P(X) = 0$		
r(negative X) = 0.5 + 0.0 + 0.5 + 0.5 / r(X) = 0							17

Smoothing
• To account for estimation from small samples, probability estimates are adjusted or <i>smoothed</i> .
• Laplace smoothing using an <i>m</i> -estimate assumes that each feature is given a prior probability, <i>p</i> , that is assumed to have been previously observed in a "virtual" sample of size <i>m</i> .
$P(X_i = x_{ij} Y = y_k) = \frac{n_{ijk} + mp}{n_k + m}$
• For binary features, <i>p</i> is simply assumed to be 0.5.

18

Laplace Smothing Example

- Assume training set contains 10 positive examples:
 - 4: small
 - 0: medium
 - 6: large
- Estimate parameters as follows (if *m*=1, *p*=1/3)
 - P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394
 - P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
 - P(large | positive) = (6 + 1/3) / (10 + 1) = 0.576

19

21

- P(small or medium or large | positive) = 1.0

Continuous Attributes

- If X_i is a continuous feature rather than a discrete one, need another way to calculate $P(X_i | Y)$.
- Assume that X_i has a Gaussian distribution whose mean and variance depends on Y.
- During training, for each combination of a continuous feature X_i and a class value for Y, y_k, estimate a mean, μ_{ik}, and standard deviation σ_{ik} based on the values of feature X_i in class y_k in the training data.
- During testing, estimate $P(X_i | Y=y_k)$ for a given example, using the Gaussian distribution defined by μ_{ik} and σ_{ik} .

$$P(X_{i} | Y = y_{k}) = \frac{1}{\sigma_{ik} \sqrt{2\pi}} \exp\left(\frac{-(X_{i} - \mu_{ik})^{2}}{2\sigma_{ik}^{2}}\right)$$

20

Comments on Naïve Bayes

- Tends to work well despite strong assumption of conditional independence.
- Experiments show it to be quite competitive with other classification methods on standard UCI datasets.
- Although it does not produce accurate probability estimates when its independence assumptions are violated, it may still pick the correct maximum-probability class in many cases.
- Able to learn conjunctive concepts in any case
 Does not perform any search of the hypothesis space. Directly constructs a hypothesis from parameter estimates that are easily calculated from the training data.
- Strong bias
 Not guarantee consistency with training data.
- Typically handles noise well since it does not even focus on completely fitting the training data.