
1

1

CS 391L: Machine Learning:
Bayesian Learning:

Naïve Bayes

Raymond J. Mooney
University of Texas at Austin
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Axioms of Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.

• The probability of  disjunction is:
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Conditional Probability 

• P(A | B) is the probability of A given B

• Assumes that B is all and only information 
known.

• Defined by:
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Independence

• A and B are independent iff:

• Therefore, if A and B are independent:
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These two constraints are logically equivalent
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Joint Distribution

• The joint probability distribution for a set of random variables, 
X1,…,Xn gives the probability of every combination of values (an n-
dimensional array with vn values if all variables are discrete with v
values, all vn values must sum to 1): P(X1,…,Xn)

• The probability of all possible conjunctions (assignments of values to 
some subset of variables) can be calculated by summing the 
appropriate subset of values from the joint distribution.

• Therefore, all conditional probabilities can also be calculated.
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Probabilistic Classification

• Let Y be the random variable for the class which takes values 
{ y1,y2,…ym}.

• Let X be the random variable describing an instance consisting 
of a vector of values for n features <X1,X2…Xn>, let xk be a 
possible value for X and xij a possible value for Xi.

• For classification, we need to compute P(Y=yi | X=xk) for i=1…m
• However, given no other assumptions, this requires a table 

giving the probability of each category for each possible instance 
in the instance space, which is impossible to accurately estimate 
from a reasonably-sized training set.
– Assuming Y and all Xi are binary, we need 2n entries to specify      

P(Y=pos | X=xk) for each of the 2n possible xk’s since
P(Y=neg | X=xk) = 1 – P(Y=pos | X=xk) 

– Compared to 2n+1 – 1 entries for the joint distribution P(Y,X1,X2…Xn)
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Bayes Theorem

Simple proof from definition of conditional probability:
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QED:

(Def. cond. prob.)

(Def. cond. prob.)
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Bayesian Categorization

• Determine category of xk by determining for each yi

• P(X=xk) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)

• Need to know:
– Priors: P(Y=yi) 

– Conditionals: P(X=xk | Y=yi)

• P(Y=yi) are easily estimated from data. 
– If ni of the examples in D are in yi then P(Y=yi) =  ni / |D|

• Too many possible instances (e.g. 2n for binary 
features) to estimate all P(X=xk | Y=yi).

• Still need to make some sort of independence 
assumptions about the features to make learning 
tractable.
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Generative Probabilistic Models

• Assume a simple (usually unrealistic) probabilistic method 
by which the data was generated.

• For categorization, each category has a different 
parameterized generative model that characterizes that 
category.

• Training : Use the data for each category to estimate the 
parameters of the generative model for that category. 
– Maximum Likelihood Estimation (MLE) : Set parameters to 

maximize the probability that the model produced the given 
training data.

– If Mλ denotes a model with parameter values λ and Dk is the 
training data for the kth class, find model parameters for class k
(λk) that maximize the likelihood of Dk:

• Testing: Use Bayesian analysis to determine the category 
model that most likely generated a specific test instance.
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Naïve Bayes Generative Model
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Naïve Bayes Inference Problem
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Naïve Bayesian Categorization

• If we assume features of an instance are independent given 
the category(conditionally independent).

• Therefore, we then only need to know P(Xi | Y) for each 
possible pair of a feature-value and a category.

• If Y and all Xi and binary, this requires specifying only 2n
parameters:
– P(Xi=true | Y=true) and P(Xi=true | Y=false) for each Xi

– P(Xi=false | Y) = 1 – P(Xi=true | Y)

• Compared to specifying 2n parameters without any 
independence assumptions.
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Naïve Bayes Example

0.30.9P(circle | Y)

0.30.05P(triangle | Y)

0.40.05P(square | Y)

0.40.05P(green | Y)

0.30.05P(blue | Y)

0.30.9P(red | Y)

0.40.5P(large | Y)

0.20.1P(medium | Y)

0.40.4P(small | Y)

0.50.5P(Y)

negativepositiveProbability

Test Instance:
<medium ,red, circle>
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Naïve Bayes Example

0.30.9P(circle | Y)

0.30.9P(red | Y)

0.20.1P(medium | Y)

0.50.5P(Y)

negativepositiveProbability

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)
0.5        *               0.1              *        0.9        *        0.9

=  0.0405 / P(X) 

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle| negative) / P(X)
0.5       *              0.2               *        0.3             *     0.3

=  0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495 

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:
<medium ,red, circle>
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Estimating Probabilities

• Normally, probabilities are estimated based on observed 
frequencies in the training data.

• If D contains nk examples in category yk, and nijk of these nk
examples have the jth value for feature Xi, xij, then:

• However, estimating such probabilities from small training 
sets is error-prone.

• If due only to chance, a rare feature, Xi, is always false in 
the training data, ∀yk :P(Xi=true | Y=yk) = 0.

• If  Xi=true then occurs in a test example, X, the result is that 
∀yk: P(X | Y=yk) = 0 and ∀yk: P(Y=yk | X) = 0
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Probability Estimation Example

0.51.0P(circle | Y)

0.50.0P(triangle | Y)

0.00.0P(square | Y)

0.00.0P(green | Y)

0.50.0P(blue | Y)

0.51.0P(red | Y)

0.50.5P(large | Y)

0.00.0P(medium | Y)

0.50.5P(small | Y)

0.50.5P(Y)

negativepositiveProbability

negitivetriangleredsmall3

positivecircleredlarge2

positivecircleredsmall1

negitivecirclebluelarge4

CategoryShapeColorSizeEx

Test Instance X:
<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 /  P(X) = 0
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Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.
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Laplace Smothing Example

• Assume training set contains 10 positive examples:
– 4: small

– 0: medium

– 6: large

• Estimate parameters as follows (if m=1, p=1/3)
– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394

– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03

– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576

– P(small or medium or large | positive) =        1.0
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Continuous Attributes

• If Xi is a continuous feature rather than a discrete one, need 
another way to calculate P(Xi | Y).

• Assume that Xi has a Gaussian distribution whose mean 
and variance depends on Y.

• During training, for each combination of a continuous 
feature Xi and a class value for Y, yk, estimate a mean, µik , 
and standard deviation σik based on the values of feature Xi
in class yk in the training data.

• During testing, estimate P(Xi | Y=yk) for a given example, 
using the Gaussian distribution defined by µik and σik . −−==
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Comments on Naïve Bayes

• Tends to work well despite strong assumption of 
conditional independence.

• Experiments show it to be quite competitive with other 
classification methods on standard UCI datasets.

• Although it does not produce accurate probability 
estimates when its independence assumptions are violated, 
it may still pick the correct maximum-probability class in 
many cases.
– Able to learn conjunctive concepts in any case

• Does not perform any search of the hypothesis space.  
Directly constructs a hypothesis from parameter estimates 
that are easily calculated from the training data.
– Strong bias

• Not guarantee consistency with training data.
• Typically handles noise well since it does not even focus 

on completely fitting the training data.


