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Axioms of Probability Theory

¢ All probabilities between 0 and 1
0<P(A) <1
 True proposition has probability 1, false has
probability 0.
P(true) = 1 P(false) = 0.
* The probability of disjunction is:
P(ACB) = P(A) +P(B)-P(ACB)
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Conditional Probability

* P(A|B) is the probability oA givenB

» Assumes thaB is all and only information
known.

 Defined by:

P(AOB)
P(B)

JCP

P(A|B) =

Independence

* A andB areindependent iff:
P(AIB) =P(A)
P(B|A) =P(B)

These two constraints are logically equivalent

» Therefore, ifA andB are independent:

P(AIB) =% = P(A)

P(AOB) =P(A)P(B)

Joint Distribution

« The joint probability distribution for a set of random variables,
Xy....X, gives the probability of every combination of valuesifan
dimensional array with" values if all variables are discrete with
values, alk" values must sum to 1): R(...,X)

positive negative

circle square circle square
red 0.20 0.02 red 0.05 0.30
blue 0.02 0.01 blue 0.20 0.20

« The probability of all possible conjunctions (assignments afesgto
some subset of variables) can be calculated by summing the
appropriate subset of values from the joint distribution.

P(red Ccircle) = 020+ 005= 025
P(red) = 020+ 002+ 005+ 0.3 = 057

* Therefore, all conditional probabilities can also be calculated.
P(positive|red Ocircle) = P(positiveCred Laircle) rqd Cdrde) _ 020_ 080
P(red Ocircle) 025

Probabilistic Classification

Let Y be the random variable for the class which takes values

{Y1¥are- Y-
Let X be the random variable describing an instance consisting
of a vector of values far features X;,X,...X>, letx be a
possible value foX andx; a possible value fox;
For classification, we need to comput&®( | X=x,) for i=1...m
However, given no other assumptions, this requires a table
giving the probability of each category for each possible instan
in the instance space, which is impossible to accurately estimg
from a reasonably-sized training set.
— AssumingY and allX; are binary, we need'2ntries to specify
P(Y=pos [X=x,) for each of the 2possiblex,’s since
P(Y=neg [X=x) = 1 — P{=pos [X=x,)
— Compared to 2!— 1 entries for the joint distribution BK,,X,...X,)

ce
te




Bayes Theorem

P(E[H)P(H)

PHIE)===p o

Simple proof from definition of conditional probdity:

P(H|E) :w (Def. cond. prob.)
P(E)
P(E|H)= % (Def. cond. prob.)
P(HCE)=P(E|H)P(H)
QED: P(H |E) =%

Bayesian Categorization

» Determine category of by determining for each

P(Y=y)P(X=x1Y=y)
P(X=x,)

PY=y | X=%)=

* P(X=x,) can be determined since categories are
complete and disjoint.
o P(Y=y)P(X =X [Y =y,

A O
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P(X =)= 3 P(Y = y)P(X =%, Y =¥,)

i=1

Bayesian Categorization (cont.)

* Need to know:
— Priors: P¥=y;)
— Conditionals: PX=x,| Y=y;)

* P(Y=y;) are easily estimated from data.
— If n, of the examples iD are in ythen P¥=y,) = n;/ D|

» Too many possible instances (e.gfa binary
features) to estimate all’®¢x, | Y=y,).

« Still need to make some sort of independence
assumptions about the features to make learning
tractable.

Generative Probabilistic Models

» Assume a simple (usually unrealistic) probabilistic method
by which the data was generated.

« For categorization, each category has a different
parameterized generative model that characterizes that
category.

» Training: Use the data for each category to estimate the
parameters of the generative model for that category.

— Maximum Likelihood Estimation (MLE) : Set parameters to
maximize the probability that the model produced the given
training data.

— If M, denotes a model with parameter valuesdD, is the
training data for théth class, find model parameters for class
(%) that maximize the likelihood db,:

A, =argmaxP(D, |M,)
A
» Testing. Use Bayesian analysis to determine the category
model that most likely generated a specific test instance.
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Naive Bayes Generative Model
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Naive Bayes Inference Problem

Ig) red circ
<7 %

&
*

Size Color Shape Size Color Shape
Positive Negative 1




Naive Bayesian Categorization

< If we assume features of an instance are indepegéesmt
the category(conditionally independennt).

P(X 1Y) = P(X;, Xp, X, [Y) =[] POX; 1Y)

* Therefore, we then only need to knowR(y) for each
possible pair of a feature-value and a category.

« If Yand allX; and binary, this requires specifying only 2
parameters:
— P(X=true |Y=true) and P;=true |Y=false) for eactX;
— PX=false |Y) = 1 — PK=true |Y)

« Compared to specifying'parameters without any
independence assumptions.

Naive Bayes Example

Probability positive negative
P(Y) 05 0.5
P(small |Y) 0.4 0.4
P(medium |) 0.1 0.2
P(arge ) 05 04 Test Instance:
P(red |Y) 0.9 0.3 <medium ,red, circle>
P(blue [) 0.05 0.3
P(green ) 0.05 0.4
P(squareY) 0.05 0.4
P(triangle [Y) 0.05 0.3
P(circle |Y) 0.9 0.3
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Naive Bayes Example

Probability positive negative
PM 0.5 0.5
P(medium |Y) 0.1 0.2
Pred |Y) 0.9 0.3 Test Instance:
P(circle |Y) 0.9 03 <medium ,red, circle>

P(positive |X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | pesjti PK)
05 * 0.1 * 0.9 * 0.9
= 0.0405/PX) = 0.0405/0.0495 = 0.8181
P(negative K) = P(negative)*P(medium | negative)*P(red | negative)*P(cjrokegative) / PX)
0.5 * 0.2 * 0.3 * .3
= 0.009/PX) =0.009/0.0495=0.1818
P(positive X) + P(negative X) = 0.0405/ PX) + 0.009/ PX) = 1

P(X) = (0.0405 + 0.009) = 0.0495

Estimating Probabilities

* Normally, probabilities are estimated based on observed
frequencies in the training data.

« If D containsn, examples in categosy, andn;, of thesen,
examples have tljeh value for feature;, x;, then:

Mk
POG =% 1Y =y)=—%
Kk
« However, estimating such probabilities from small training

sets is error-prone.

« If due only to chance, a rare featuxg,is always false in
the training dataly, :P(X;=true [Y=y,) = 0.

« If X=true then occurs in a test examplethe result is that
Oy, PX | Y=y,) = 0 andy,: P(Y=y,|X) =0
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Probability Estimation Example

Ex Sve Color | Shape | Category Probability positive negative
P(Y) 0.5 0.5
1 small red circle | positive P(small |Y) 0.5 0.5
P(medium |Y) 0.0 0.0

2 large red circle | positive

P(large [Y) 0.5 0.5
3 small | red triangle | negitive P(red |Y) 1.0 0.5
P(blue |Y) 0.0 0.5
4 large blue circle negitive P(green ) 0.0 0.0
P(squareY) 0.0 0.0
Test Instance: P(tn.j,mgle \9) 0.0 0.5
<medium, red, circle> P(circle [Y) 1.0 05

P(positive X) =0.5*0.0*1.0*1.0/P(X)=0
P(negative K) =0.5*0.0*0.5* 0.5/ P(X) =0

Smoothing

* To account for estimation from small samples,
probability estimates are adjustedsooothed.

 Laplace smoothing using amestimate assumes that
each feature is given a prior probabilipythat is
assumed to have been previously observed in a
“virtual” sample of sizem.

n, +mp
=X. = -k "
P(XI Xl] |Y yk) nk +m

 For binary featureq is simply assumed to be 0.5.
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Laplace Smothing Example

* Assume training set contains 10 positive examples
— 4: small
— 0: medium
— 6: large
» Estimate parameters as followsrtifl, p=1/3)
— P(small | positive) = (4 + 1/3) / (10 +1) = 0.394
— P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
— P(large | positive) = (6 + 1/3) / (10+ 1) = 0.576

— P(small or medium or large | positive) = 1.0

Continuous Attributes

If X; is a continuous feature rather than a discrete one, nee
another way to calculate R( Y).

Assume thak; has a Gaussian distribution whose mean
and variance depends ¥n

During training, for each combination of a continuous
featureX; and a class value fof, y,, estimate a meany, ,

and standard deviatiar based on the values of featute

in classy, in the training data.

During testing, estimate R(| Y=y,) for a given example,
using the Gaussian distribution definedugyando;, .

— — 1 _(Xi_iuik)2
P(X. |Y = = ex
O IY =y = ey =

20

Comments on Nailve Bayes

¢ Tends to work well despite strong assumption of
conditional independence.

» Experiments show it to be quite competitive with other
classification methods on standard UCI datasets.

» Although it does not produce accurate probability
estimates when its independence assumptions are violated
it may still pick the correct maximum-probability class in
many cases.

— Able to learn conjunctive concepts in any case

» Does not perform any search of the hypothesis space.
Directly constructs a hypothesis from parameter estimates
that are easily calculated from the training data.

— Strong bias

< Not guarantee consistency with training data.

» Typically handles noise well since it does not even focus
on completely fitting the training data.
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