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Perceptron Revisited: Linear Separators

* Binary classification can be viewed as the task of
separating classes in feature space:

wix+b=0

wix+b<0

¢ f(x) = signfv™x + b)
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Linear Separators
* Which of the linear separators is optimal?
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Classification Margin

:
- Distance from exampbe to the separator is= . \t\,r

¢ Examples closest to the hyperplanesagport vectors.
* Margin p of the separator is the distance between support ve
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Maximum Margin Classification

¢ Maximizing the margin is good according to intuition and
PAC theory.

< Implies that only support vectors matter; other training
examples are ignorable.
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Linear SVM Mathematically

« Let training set {&;, ¥)}i-1.» X;,ORY, y, O{-1, 1} be separated by a
hyperplane with margip. Then for each training exampbe, (y,):

wix +b<-p/2 ify=-1

Wix,+b>pl2 ify=1 = Yi(WTx; +b) > p/2

» For every support vector the above inequality is an equality.
After rescalingv andb by p/2 in the equality, we obtain that

distance between eagpand the hyperplane is= % :ﬁ
w w

e Then the margin can be expressed through (rescalad}l b as:

2
p=2r=—
il
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Linear SVMs Mathematically (cont.)
« Then we can formulate thgiadratic optimization problem:
Findw andb such that
2
p=2 . -
W] 1S maximized
and for all &;, y;), i=1.n:  y(WwTx +b)>1
Which can be reformulated as:
Findw andb such that
®(W) = [|w|f=wTw is minimized
and for all &, y;), i=1.n: y,(WTx,+b)>1
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Solving the Optimization Problem

Findw and b such that
®(w) =w'w is minimized
and for all &, y;), i=1.n: y,(W'x+b)>1

* Need to optimize guadraticfunction subject tdinear constraints.

* Quadratic optimization problems are a well-known class ofiemaatical
programming problems for which several (non-trivial) algonghexist.

e The solution involves constructingdaal problemwhere a_agrange
multiplier ¢; is associated with every inequality constraint in the gdrima
(original) problem:

Find a;...a,such that

Q(0) =Xa; - VXX a5y, XX is maximized and

(1) Zay=0

(2) 0; 20 for all o
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The Optimization Problem Solution

» Given a solution,...a, to the dual problem, solution to the primal is:

w =ZoyX b=y - Zoyx % foranye,> 0

» Each non-zere, indicates that correspondingis a support vector.
* Then the classifying function is (note that we don’t neegkplicitly):

f(X) = ZayxTx +b

* Notice that it relies on ainner productetween the test poirtand the
support vectors; — we will return to this later.

« Also keep in mind that solving the optimization problem inedlv
computing the inner products x; between all training points.
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Soft Margin Classification
* What if the training set is not linearly separable?

» Slack variableg; can be added to allow misclassification of difficult or
noisy examples, resulting margin calkft
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Soft Margin Classification Mathematically

¢ The old formulation:

Findw and b such that

®(w) =w'w is minimized

and forall & ,y), i=1.n: y,(W'x+b)>1

« Modified formulation incorporates slack variables:

Findw and b such that
®(w) =wTw + CZ¢  is minimized
and for all & ,y;), i=1.n: yWwix+b)>1-¢ , &20

* Paramete€ can be viewed as a way to control overfitting: it “trade’ off
the relative importance of maximizing the margin and fittimgtraining
data.
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Soft Margin Classification — Solution

« Dual problem is identical to separable case (wookbe identical if the 2-
norm penalty for slack variabl€x&? was used in primal objective, we
would need additional Lagrange multipliers for slack variables):

Find a,...aysuch that

Q(0) =Zq; - VaXZayoryiyxTx; is maximized and
(1) Zay=0

(2) 0<g;<Cforall g

» Again, x with non-zeray; will be support vectors.

+ Solution to the dual problem is: Again, we don’t need to

computew explicitly for
W =ZayX classification:

b=y, (1-&) - ZayxTx, foranyks.t.a>0
yk( é‘:k) alyl i Sk y % f(X) =Z(liiniTX+ b
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Theoretical Justification for Maximum Margins

« Vapnik has proved the following:
The class of optimal linear separators has VC dimension h bourated f

above as D?
h<min {me} +1

wherep is the margin, D is the diameter of the smallest spheecan
enclose all of the training examples, angisithe dimensionality.

« Intuitively, this implies that regardless of dimensionatityve can
minimize the VC dimension by maximizing the margin

« Thus, complexity of the classifier is kept small regardtéss
dimensionality.
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Linear SVMs: Overview
The classifier is aeparating hyperplane.

Most “important” training points are support vectors; they detfiree
hyperplane.

Quadratic optimization algorithms can identify whichrimag points; are
support vectors with non-zero Lagrangian multipliers

Both in the dual formulation of the problem and in the solutiainitig

points appear only inside inner products:
Find a;...aysuch that

f(x) = Zogy X+ b
Q(a) =Z¢; - VzZZa‘rxly,yis maximized and m

(1) Zay;=0
(2) 0= Cforallg
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Non-linear SVMs
« Datasets that are linearly separable with some naisle out great:
S-|-o
ol ¥ x
« But what are we going to do if the dataset is just too hard?
5 X
« How about... mapping data to a higher-dimensional space:
X2 °
L]
L]
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Non-linear SVMs: Feature spaces

General idea: the original feature space can alwagspped to some
higher-dimensional feature space where the training sqiasatse:

D: Xx— @(X)

E
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The “Kernel Trick”

The linear classifier relies on inner product betweenovest(x;,x,)=x,"x;

If every datapoint is mapped into high-dimensional spaceowges
transformationd: x — ¢(x), the inner product becomes:

K(x,%)= @(x) To(x)
A kernel functioris a function that is egiuvalent to an inner product in
some feature space.

Example:

2-dimensional vectors=[x; x,J; let K(x,x)=(1 +x7x)2

Need to show thd{(x,x,)= (x) Te(x):

Kx)=(1 +%7%)2= 14X 2,2 4+ 2 %X XX+ X257 + 25 + 2Xp%,=
= [1 %02 V2%, %2 V2 V2] [1 %32 V2%, %52 V2X V2X,] =
=o(x)To(x), wherep(x) = [1 X2 V2%, X,2 V2%, V2x)]

Thus, a kernel functioimplicitly maps data to a high-dimensional space
(without the need to compute eapfx) explicitly).
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What Functions are Kernels?

+ For some functionk(x;,x) checking thak(x;x;)= ¢(x) To(x;) can be
cumbersome.
e Mercer's theorem:
Every semi-positive definite symmetric function is a kernel

* Semi-positive definite symmetric functions correspond tenai-positive
definite symmetric Gram matrix:
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Examples of Kernel Functions

Linear: K(x,x)= %%
— Mapping®: x — ¢(x), wheregp(x) is x itself

Polynomial of powep: K(x;,x)= (1+x7x)P
— Mapping®: x — ¢(x), whereg(x) has{d"p] dimensions
p

2
x|

Gaussian (radial-basis functiomx,x) = € 2

— Mapping®: x— ¢(x), whereg(x) is infinite-dimensionalevery point is
mapped ta function(a Gaussian); combination of functions for support
vectors is the separator.

Higher-dimensional space still higrinsic dimensionalityd (the mapping
is notonto), but linear separators in it corresponaém-linearseparators
in original space.

K(xpxy) [ K(XyXo) | K(Xy,Xq) g K(x1.%,)
K(xpXy) [ K(XpXg) | K(XpXs) K(Xz%,)
K=
KXy [ K(XpXa) | K(XpXs) - KX Xn)
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Non-linear SVMs Mathematically

* Dual problem formulation:

Find a,...a,such that

Q(w) =Zg; - VaXZoyoqyy;K(x, X)) is maximized and
(1) Zay=0

(2) @;2 0 for all

* The solution is:

f(X) = ZayK(x;, )+ b

» Optimization techniques for finding's remain the same!
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SVM applications

SVMs were originally proposed by Boser, Guyon and Vapnikd®2 and
gained increasing popularity in late 1990s.

SVMs are currently among the best performers for a numbsasdification
tasks ranging from text to genomic data.

SVMs can be applied to complex data types beyond feature véemrgraphs
sequences, relational data) by designing kernel functions fordsua.

SVM techniques have been extended to a number of tasks segjtession
[Vapnik et al.’97], principal component analysis [Schélkagtfal.’99], etc.
Most popular optimization algorithms for SVMs wcompositiorto hill-
climb over a subset of's at a time, e.g. SMO [Platt '99] and [Joachims ’99]L
Tuning SVMs remains a black art: selecting a specifinddeand parameters
usually done in a try-and-see manner.
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