Artificial Neuron Model
(Linear Threshold Unit)

- Model network as a graph with cells as nodes and synaptic connections as weighted edges from node \(i \) to node \(j \), \(w_{ji} \)

- Model net input to cell as:
\[
net_j = \sum_{i} w_{ji} o_i
\]

- Cell output is:
\[
o_j = \begin{cases}
0 & \text{if } net_j < T_j \\
1 & \text{if } net_j \geq T_j
\end{cases}
\]
\((T_j \text{ is threshold for unit } j)\)

Perceptron Learning Rule

- Update weights by:
\[
w_{ji} = w_{ji} + \eta(t_j - o_j) o_i
\]
where \(\eta \) is the “learning rate”
\(t_j \) is the teacher specified output for unit \(j \).
- Equivalent to rules:
 - If output is correct do nothing.
 - If output is high, lower weights on active inputs
 - If output is low, increase weights on active inputs
- Also adjust threshold to compensate:
\[
T_j = T_j - \eta(t_j - o_j)
\]
Perceptron Learning Algorithm
(Rosenblatt, 1957)

• Iteratively update weights until convergence.

Initialize weights to random values
Until outputs of all training examples are correct
 For each training pair, E, do:
 Compute current output o_j for E given its inputs
 Compare current output to target value, t_j, for E
 Update synaptic weights and threshold using learning rule

• Each execution of the outer loop is typically called an *epoch.*