Text Clustering



Clustering

» Partition unlabeled examples into disjoint
subsets of cl/usters, such that:

— Examples within a cluster are very similar

— Examples 1n different clusters are very different

» Discover new categories 1n an unsupervised
manner (no sample category labels provided).



Clustering Example




Hierarchical Clustering

* Build a tree-based hierarchical taxonomy
(dendrogram) from a set of unlabeled examples.
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» Recursive application of a standard clustering
algorithm can produce a hierarchical clustering.



Aglommerative vs. Divisive Clustering

» Aglommerative (bottom-up) methods start
with each example 1n its own cluster and

iteratively combine them to form larger and
larger clusters.

» Divisive (partitional, top-down) separate all
examples immediately into clusters.



Hierarchical Agglomerative Clustering

(HAC)

» Assumes a similarity function for determining

the similarity

of two 1nstances.

 Starts with all instances 1n a separate cluster
and then repeatedly joins the two clusters that

are most simi

ar until there 1s only one cluster.

* The history o:
hierarchy.

‘merging forms a binary tree or



HAC Algorithm

Start with all instances 1n their own cluster.
Until there 1s only one cluster:
Among the current clusters, determine the two
clusters, c;and Cis that are most similar.
Replace c;and ¢; with a single cluster ¢; U ¢;



Cluster Similarity

* Assume a similarity function that determines the
similarity of two instances: sim(x,y).

— Cosine similarity of document vectors.

* How to compute similarity of two clusters each
possibly containing multiple instances?
— Single Link: Similarity of two most similar members.
— Complete Link: Similarity of two least stmilar members.

— Group Average: Average similarity between members.



Non-Hierarchical Clustering

Typically must provide the number of desired
clusters, k.

Randomly choose £ 1nstances as seeds, one per
cluster.

Form initial clusters based on these seeds.

[terate, repeatedly reallocating instances to
different clusters to improve the overall clustering.

Stop when clustering converges or after a fixed
number of iterations.



K-Means

 Assumes instances are real-valued vectors.

* Clusters based on centroids, center of
gravity, or mean of points 1n a cluster, c:

» Reassignment of instances to clusters 1s
based on distance to the current cluster
centroids.
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Distance Metrics

 Euclidian distance (L, norm):
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K-Means Algorithm

Let d be the distance measure between 1nstances.
Select k random 1nstances {s,, $,,... §,} as seeds.
Until clustering converges or other stopping criterion:
For each instance x;:
Assign x; to the cluster ¢; such that d(x;, s;) 1s minimal.
(Update the seeds to the centroid of each cluster)
For each cluster ¢,

8= H(Cj)
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K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reasssign clusters
Compute centroids

Reassign clusters

Converged!
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Information Extraction
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Information Extraction (IE)

 Identify specific pieces of information (data) in a
unstructured or semi-structured textual document.

* Transform unstructured information in a corpus of
documents or web pages mnto a structured database.

» Applied to different types of text:
— Newspaper articles
— Web pages
— Scientific articles
— Newsgroup messages
— Classified ads
— Medical notes
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MUC

 DARPA funded significant efforts in IE in the
early to mid 1990’s.

* Message Understanding Conference (MUC) was
an annual event/competition where results were
presented.

* Focused on extracting information from news
articles:
— Terrorist events
— Industrial joint ventures
— Company management changes

 Information extraction of particular interest to the
intelligence community (CIA, NSA).
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Other Applications

Job postings

Job resumes

Seminar announcements

Company information from the web

Apartment rental ads

Molecular biology information from MEDLINE
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Sample Job Posting

Subject: US-TN-SOFTWARE PROGRAMMER
Date: 17 Nov 1996 17:37:29 GMT

Organization: Reference.Com Posting Service
Message-ID: <56nigp$mrs@bilbo.reference.com>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-
Based Voice Mail systems. Experienced in C Programming. Must be familiar with
communicating with and controlling voice cards; preferable Dialogic, however, experience
with others such as Rhetorix and Natural Microsystems is okay. Prefer 5 years or more
experience with PC Based Voice Mail, but will consider as little as 2 years. Need to find a
Senior level person who can come on board and pick up code with very little training.
Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to:
Kim Anderson
AdANET

(901) 458-2888 fax
kimander@memphisonline.com
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Extracted Job Template

computer science job

id: 56nigp$mrs@pbilbo.reference.com
title: SOFTWARE PROGRAMMER
salary:

company:

recruiter:

state: TN

city:

country: US

language: C

platform: PC \ DOS \ OS-2 \ UNIX
application:

area: Voice Mail

req years experience: 2

desired years_experience: 5

req degree:

desired degree:

post date: 17 Nov 1996
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Amazon Book Description

</td></tr>

</table>

<b class="sans">The Age of Spiritual Machines : When Computers Exceed Human Intelligence</b><br>

<font face=verdana,arial helvetica size=-1>

by <a href="/exec/obidos/search-handle-url/index=books&field-author=

Kurzweil%2C%20Ray/002-6235079-4593641">

Ray Kurzweil</a><br>

</font>

<br>

<a href="http://images.amazon.com/images/P/0140282025.01.L.Z2727777..jpg">

<img src="http://images.amazon.com/images/P/0140282025.01.MZ2727777..gif" width=90
height=140 align=left border=0></a>

<font face=verdana,arial helvetica size=-1>

<span class="small">

<span class="small">

<b>List Price:</b> <span class=listprice>$14.95</span><br>

<b>Our Price: <font color=#990000>$11.96</font></b><br>

<b>You Save:</b> <font color=#990000><b>$2.99 </b>

(20%)</font><br>

</span>

<p> <br>... 20



Extracted Book Template

Title: The Age of Spiritual Machines :
When Computers Exceed Human Intelligence
Author: Ray Kurzweil
List-Price: $14.95
Price: $11.96
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Web Extraction

Many web pages are generated automatically from an
underlying database.

Therefore, the HTML structure of pages 1s fairly
specific and regular (semi-structured).

However, output 1s intended for human consumption,
not machine interpretation.

An IE system for such generated pages allows the web
site to be viewed as a structured database.

An extractor for a semi-structured web site 1s
sometimes referred to as a wrapper.

Process of extracting from such pages 1s sometimes

referred to as screen scraping.
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Learning for IE

* Writing accurate patterns for each slot for each

domain (e.g. each web site) requires laborious
software engineering.

 Alternative 1s to use machine learning:

— Build a training set of documents paired with human-
produced filled extraction templates.

— Learn extraction patterns or a neural network to 1dentify
the fillers of each slot using an appropriate machine
learning algorithm.
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Evaluating IE Accuracy

Always evaluate performance on independent,
manually-annotated test data not used during system
development.

Measure for each test document:

— Total number of correct extractions in the solution
template: N

— Total number of slot/value pairs extracted by the system: £

— Number of extracted slot/value pairs that are correct (i.e. in
the solution template): C

Compute average value of metrics adapted from IR:
— Recall = C/N

— Precision = C/E

— F-Measure = Harmonic mean of recall and precision
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Semantic Parsing
for
Question Answering
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Semantic Parsing

» Semantic Parsing: Transforming natural
language (NL) sentences into completely
formal logical forms or meaning
representations (MRs).

* Sample application domains where MRs are
directly executable by another computer
system to perform some task.

— Database/knowledge-graph queries
— Robot command language
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Geoquery:
A Database Query Application

* Query application for U.S. geography database
containing about 800 facts [Zelle & Mooney, 1996]

Which rivers run
through the states
bordering Texas?

Arkansas, Canadian, Cimarron,
Gila, Mississippi, Rio Grande ...

Answer

Semantic Parsing

Query
answer(traverse(next_to(stateid(‘texas’)))) )—>
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Formal Query Language

* Most early work on computational
semantics 1s based on predicate logic

What is the smallest state by area?
answer(x, ,smallest(x,,(state(x, ),area(x,,x,))))

x; 1s a logical variable that denotes “the
smallest state by area”

* More recent work uses deep neural nets to
directly map “language to code” and generate
SQL queries or other programs

28



Learning Semantic Parsers

* Manually programming robust semantic parsers
1s difficult due to the complexity of the task.

* Semantic parsers can be learned automatically
from sentences paired with their logical form.

NL—->MR
Training Exs

Natural Meaning
Language Rep
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Compositional Semantics

* Approach to semantic analysis based on building up

an MR compositionally based on the syntactic
structure of a sentence.

* Build MR recursively bottom-up from the parse tree.

BuildMR (parse-tree)

If parse-tree is a terminal node (word) then

return an atomic lexical meaning for the word.
Else

For each child, subtree,, of parse-tree
Create its MR by calling BuildMR(subtree,)

Return an MR by properly combining the resulting MRs
for 1ts children into an MR for the overall parse-tree.



Composing MRs from Parse Trees

What is the capital of Ohio?
S answer(capital(loc_2(stateid(‘ohio'))))

/\
NP answer() VP capital(loc_2(stateid('ohio")))
/ /T
V o NP capital(loc_2(stateid(‘ohio")))

WP answer()

| |

What answer() V]\?)Z@ DT2 Necapital() PPloc_2(stateid(‘ohio"))
| | |

1S the capital INloc_2() NP stateid('ohio’)
%) @ capital()
of NN Pstateid('ohio")
loc_2() |
Ohio stateid('ohio")
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Experimental Corpora

* GeoQuery [Zelle & Mooney, 1996]
— 250 queries for the given U.S. geography database
— 6.87 words on average in NL sentences
— 5.32 tokens on average 1n formal expressions

— Also translated into Spanish, Turkish, & Japanese.
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Experimental Methodology

» Evaluated using standard 10-fold cross validation

e (Correctness

— CLang: output exactly matches the correct
representation

— Geoquery: the resulting query retrieves the same
answer as the correct representation

* Metrics
Precision — | Correct Completed Parses |
| Completed Parses |
Recall = |Correct Completed Parses|

|Sentences|
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Precision Learning Curve for GeoQuery
(WASP)

s T 1
s
(= r]
KT
=
& 40 F -
20 English -
Spanish —
Japanese ———
Tortkish ——
D L | 1 Il
0 50 100 150 200 250

Number of training examples

34



Recall (%)

Recall Learning Curve for GeoQuery

(WASP)
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