Probabilistic Language-Model Based Document Retrieval
Naïve Bayes for Retrieval

- Naïve Bayes can also be used for ad-hoc document retrieval.
- Treat each of the n documents as a category with only one training example, the document itself.
- Classify queries using this n-way categorization.
- Rank documents based on the posterior probability of their category.
- Effectively using Naïve Bayes as a simple 1-gram language model for each document.
Generative Model for Retrieval

Query

Doc1 0.3
Doc2 0.1
Doc3 0.08
Doc4 0.06
Doc5 0.18
Doc6 0.28

Ranked Retrievals:
Doc 1 0.3
Doc 6 0.28
Doc 5 0.18
Doc 2 0.1
Doc 3 0.08
Doc 4 0.06
Smoothing

- Proper smoothing is important for this approach to work well.
- Laplace smoothing does not work well for this application.
- Better to use \textit{linear interpolation} for smoothing.
Linear Interpolation Smoothing

- Estimate conditional probabilities $P(X_i \mid Y)$ as a mixture of conditioned and unconditioned estimates:

$$P(X_i \mid Y) = \lambda \hat{P}(X_i \mid Y) + (1 - \lambda) \hat{P}(X_i)$$

- $\hat{P}(X_i \mid Y)$ is the probability of drawing word X_i from the urn of words in category (i.e. document) Y.
- $\hat{P}(X_i)$ is the probability of drawing word X_i from the urn of words in the entire corpus (i.e. all document urns combined into one big urn).
Amount of Smoothing

• Value of λ controls the amount of smoothing.
• The lower λ is, the more smoothing there is since the unconditioned term is weighted higher ($1 - \lambda$).
• Setting λ properly is important for good performance.
• Set λ manually or automatically based on maximizing performance on a development set of queries.
• Lower λ tends to work better for long queries, high λ for short queries.
Experimental Results on CF Corpus
Effect of λ Parameter

Given long queries, large amount of smoothing ($\lambda=0.1$) seems to work best
Experimental Results on CF Corpus
Effect of Laplace Smoothing Parameter

![Graph showing the effect of Laplace smoothing parameter on precision and recall.](image-url)
Experimental Results on CF Corpus
Comparison of Smoothing Methods and VSR

Laplace smoothing does much worse.
Linear interp does about the same as vector-space.
Performance of Language Model Approach

• Larger scale TREC experiments demonstrate that the LM approach with proper smoothing works slightly better than a well-tuned vector-space approach.

• Need to make LM approach efficient by exploiting inverted index.
 – Don’t bother to compute probability of documents that do not contain any of the query words.