
1

Web Search

Advances &

Link Analysis

2

Meta-Search Engines

• Search engine that passes query to several other
search engines and integrate results.
– Submit queries to host sites.

– Parse resulting HTML pages to extract search results.

– Integrate multiple rankings into a “consensus” ranking.

– Present integrated results to user.

• Examples:
– Metacrawler

– SavvySearch

– Dogpile

3

HTML Structure & Feature Weighting

• Weight tokens under particular HTML tags
more heavily:
– <TITLE> tokens (Google seems to like title matches)

– <H1>,<H2>… tokens

– <META> keyword tokens

• Parse page into conceptual sections (e.g.
navigation links vs. page content) and weight
tokens differently based on section.

4

Bibliometrics: Citation Analysis

• Many standard documents include bibliographies
(or references), explicit citations to other
previously published documents.

• Using citations as links, standard corpora can be
viewed as a graph.

• The structure of this graph, independent of
content, can provide interesting information about
the similarity of documents and the structure of
information.

• CF corpus includes citation information.

5

Impact Factor

• Developed by Garfield in 1972 to measure the
importance (quality, influence) of scientific
journals.

• Measure of how often papers in the journal are
cited by other scientists.

• Computed and published annually by the Institute
for Scientific Information (ISI).

• The impact factor of a journal J in year Y is the
average number of citations (from indexed
documents published in year Y) to a paper
published in J in year Y1 or Y2.

• Does not account for the quality of the citing
article.

6

Bibliographic Coupling

• Measure of similarity of documents introduced by
Kessler in 1963.

• The bibliographic coupling of two documents A
and B is the number of documents cited by both A
and B.

• Size of the intersection of their bibliographies.

• Maybe want to normalize by size of bibliographies?

A B

7

Co-Citation

• An alternate citation-based measure of similarity
introduced by Small in 1973.

• Number of documents that cite both A and B.

• Maybe want to normalize by total number of
documents citing either A or B ?

A B

8

Citations vs. Links

• Web links are a bit different than citations:
– Many links are navigational.

– Many pages with high in-degree are portals not
content providers.

– Not all links are endorsements.

– Company websites don’t point to their
competitors.

– Citations to relevant literature is enforced by
peer-review.

9

Authorities

• Authorities are pages that are recognized as
providing significant, trustworthy, and
useful information on a topic.

• In-degree (number of pointers to a page) is
one simple measure of authority.

• However in-degree treats all links as equal.

• Should links from pages that are themselves
authoritative count more?

10

Hubs

• Hubs are index pages that provide lots of
useful links to relevant content pages (topic
authorities).

• Hub pages for IR are included in the course
home page:
– http://www.cs.utexas.edu/users/mooney/ir-course

11

HITS

• Algorithm developed by Kleinberg in 1998.

• Attempts to computationally determine
hubs and authorities on a particular topic
through analysis of a relevant subgraph of
the web.

• Based on mutually recursive facts:
– Hubs point to lots of authorities.

– Authorities are pointed to by lots of hubs.

12

Hubs and Authorities

• Together they tend to form a bipartite
graph:

Hubs Authorities

13

HITS Algorithm

• Computes hubs and authorities for a
particular topic specified by a normal query.

• First determines a set of relevant pages for
the query called the base set S.

• Analyze the link structure of the web
subgraph defined by S to find authority and
hub pages in this set.

14

Constructing a Base Subgraph

• For a specific query Q, let the set of documents
returned by a standard search engine (e.g. VSR) be
called the root set R.

• Initialize S to R.

• Add to S all pages pointed to by any page in R.

• Add to S all pages that point to any page in R.

R

S

15

Base Limitations

• To limit computational expense:
– Limit number of root pages to the top 200 pages

retrieved for the query.

– Limit number of “back-pointer” pages to a random set
of at most 50 pages returned by a “reverse link” query.

• To eliminate purely navigational links:
– Eliminate links between two pages on the same host.

• To eliminate “non-authority-conveying” links:
– Allow only m (m  48) pages from a given host as

pointers to any individual page.

16

Authorities and In-Degree

• Even within the base set S for a given
query, the nodes with highest in-degree are
not necessarily authorities (may just be
generally popular pages like Yahoo or
Amazon).

• True authority pages are pointed to by a
number of hubs (i.e. pages that point to lots
of authorities).

17

Iterative Algorithm

• Use an iterative algorithm to slowly converge on a
mutually reinforcing set of hubs and authorities.

• Maintain for each page p  S:
– Authority score: ap (vector a)

– Hub score: hp (vector h)

• Initialize all ap = hp = 1

• Maintain normalized scores:

  12 
Sp

ph  12 
Sp

pa

18

HITS Update Rules

• Authorities are pointed to by lots of good hubs:

• Hubs point to lots of good authorities:





pqq

qp ha
:





qpq

qp ah
:

19

Illustrated Update Rules

2

3

a4 = h1 + h2 + h3

1

5

7

6

4

4h4 = a5 + a6 + a7

20

HITS Iterative Algorithm

Initialize for all p  S: ap = hp = 1

For i = 1 to k:

For all p  S: (update auth. scores)

For all p  S: (update hub scores)

For all p  S: ap= ap/c c:

For all p  S: hp= hp/c c:





pqq

qp ha
:





qpq

qp ah
:   1/ 2 

Sp
p ca

  1/ 2 
Sp

p ch

(normalize a)

(normalize h)

21

Convergence

• Algorithm converges to a fix-point if iterated
indefinitely.

• Define A to be the adjacency matrix for the
subgraph defined by S.
– Aij = 1 for i  S, j  S iff ij

• Authority vector, a, converges to the principal
eigenvector of ATA

• Hub vector, h, converges to the principal
eigenvector of AAT

• In practice, 20 iterations produces fairly stable
results.

22

Results

• Authorities for query: “Java”
– java.sun.com
– comp.lang.java FAQ

• Authorities for query “search engine”
– Yahoo.com
– Excite.com
– Lycos.com
– Altavista.com

• Authorities for query “Gates”
– Microsoft.com
– roadahead.com

23

Result Comments

• In most cases, the final authorities were not
in the initial root set generated using
Altavista.

• Authorities were brought in from linked and
reverse-linked pages and then HITS
computed their high authority score.

24

Finding Similar Pages Using Link Structure

• Given a page, P, let R (the root set) be t
(e.g. 200) pages that point to P.

• Grow a base set S from R.

• Run HITS on S.

• Return the best authorities in S as the best
similar-pages for P.

• Finds authorities in the “link neighbor-
hood” of P.

25

Similar Page Results

• Given “honda.com”
– toyota.com

– ford.com

– bmwusa.com

– saturncars.com

– nissanmotors.com

– audi.com

– volvocars.com

26

HITS for Clustering

• An ambiguous query can result in the
principal eigenvector only covering one of
the possible meanings.

• Non-principal eigenvectors may contain
hubs & authorities for other meanings.

• Example: “jaguar”:
– Atari video game (principal eigenvector)
– NFL Football team (2nd non-princ. eigenvector)
– Automobile (3rd non-princ. eigenvector)

27

PageRank

• Alternative link-analysis method used by
Google (Brin & Page, 1998).

• Does not attempt to capture the distinction
between hubs and authorities.

• Ranks pages just by authority.

• Applied to the entire web rather than a local
neighborhood of pages surrounding the
results of a query.

28

Initial PageRank Idea

• Just measuring in-degree (citation count) doesn’t
account for the authority of the source of a link.

• Initial page rank equation for page p:

– Nq is the total number of out-links from page q.

– A page, q, “gives” an equal fraction of its authority to
all the pages it points to (e.g. p).

– c is a normalizing constant set so that the rank of all
pages always sums to 1.





pqq qN

qR
cpR

:

)(
)(

29

Initial PageRank Idea (cont.)

• Can view it as a process of PageRank
“flowing” from pages to the pages they cite.

.1

.09

.05

.05

.03

.03

.03

.08

.08

.03

30

Initial Algorithm

• Iterate rank-flowing process until convergence:
Let S be the total set of pages.

Initialize pS: R(p) = 1/|S|

Until ranks do not change (much) (convergence)

For each pS:

For each pS: R(p) = cR´(p) (normalize)





pqq qN

qR
pR

:

)(
)(





Sp

pRc)(/1

31

Sample Stable Fixpoint

0.4

0.4

0.2

0.2

0.2

0.2

0.4

32

Linear Algebra Version

• Treat R as a vector over web pages.

• Let A be a 2-d matrix over pages where
– Avu= 1/Nu if u v else Avu= 0

• Then R=cAR

• R converges to the principal eigenvector of A.

33

Problem with Initial Idea

• A group of pages that only point to
themselves but are pointed to by other pages
act as a “rank sink” and absorb all the rank
in the system.

Rank flows into
cycle and can’t get out

34

Rank Source

• Introduce a “rank source” E that continually
replenishes the rank of each page, p, by a
fixed amount E(p).











 



)(
)(

)(
:

pE
N

qR
cpR

pqq q

35

PageRank Algorithm

Let S be the total set of pages.

Let pS: E(p) = /|S| (for some 0<<1, e.g. 0.15)

Initialize pS: R(p) = 1/|S|

Until ranks do not change (much) (convergence)

For each pS:

For each pS: R(p) = cR´(p) (normalize)

)(
)(

)1()(
:

pE
N

qR
pR

pqq q













 









Sp

pRc)(/1

36

Linear Algebra Version

• R = c(AR + E)

• Since ||R||1 =1 : R = c(A + E1)R
– Where 1 is the vector consisting of all 1’s.

• So R is an eigenvector of (A + Ex1)

37

Random Surfer Model

• PageRank can be seen as modeling a “random
surfer” that starts on a random page and then at
each point:
– With probability E(p) randomly jumps to page p.

– Otherwise, randomly follows a link on the current page.

• R(p) models the probability that this random surfer
will be on page p at any given time.

• “E jumps” are needed to prevent the random surfer
from getting “trapped” in web sinks with no
outgoing links.

38

Speed of Convergence

• Early experiments on Google used 322
million links.

• PageRank algorithm converged (within
small tolerance) in about 52 iterations.

• Number of iterations required for
convergence is empirically O(log n) (where
n is the number of links).

• Therefore calculation is quite efficient.

39

Simple Title Search with PageRank

• Use simple Boolean search to search web-
page titles and rank the retrieved pages by
their PageRank.

• Sample search for “university”:
– Altavista returned a random set of pages with

“university” in the title (seemed to prefer short
URLs).

– Primitive Google returned the home pages of
top universities.

40

Google Ranking

• Complete Google ranking includes (based on
university publications prior to
commercialization).
– Vector-space similarity component.

– Keyword proximity component.

– HTML-tag weight component (e.g. title preference).

– PageRank component.

• Details of current commercial ranking functions
are trade secrets.

41

Personalized PageRank

• PageRank can be biased (personalized) by
changing E to a non-uniform distribution.

• Restrict “random jumps” to a set of
specified relevant pages.

• For example, let E(p) = 0 except for one’s
own home page, for which E(p) = 

• This results in a bias towards pages that are
closer in the web graph to your own
homepage.

42

Google PageRank-Biased Spidering

• Use PageRank to direct (focus) a spider on
“important” pages.

• Compute page-rank using the current set of
crawled pages.

• Order the spider’s search queue based on
current estimated PageRank.

43

Link Analysis Conclusions

• Link analysis uses information about the
structure of the web graph to aid search.

• It is one of the major innovations in web
search.

• It was one of the primary reasons for
Google’s initial success.

