### **Text Categorization**

Rocchio, kNN, and Bayesian Methods

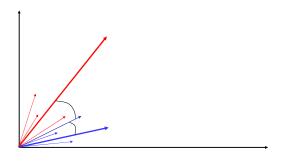
1

## Using Relevance Feedback (Rocchio)

- Relevance feedback methods can be adapted for text categorization.
- Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
- For each category, compute a *prototype* vector by summing the vectors of the training documents in the category.
- Assign test documents to the category with the closest prototype vector based on cosine similarity.

2

# Illustration of Rocchio Text Categorization



# Rocchio Text Categorization Algorithm (Training)

```
Assume the set of categories is \{c_1, c_2, \dots c_n\}
For i from 1 to n let \mathbf{p}_i = <0, 0, \dots, 0> (init. prototype vectors)
For each training example < x, c(x) > \in D
Let \mathbf{d} be the frequency normalized TF/IDF term vector for doc x
Let i = j: (c_j = c(x))
(sum all the document vectors in c_i to get \mathbf{p}_i)
Let \mathbf{p}_i = \mathbf{p}_i + \mathbf{d}
```

4

# Rocchio Text Categorization Algorithm (Test)

```
Given test document x
Let \mathbf{d} be the TF/IDF weighted term vector for x
Let m=-2 (init. maximum cosSim)
For i from 1 to n:
(compute similarity to prototype vector)
Let s = \operatorname{cosSim}(\mathbf{d}, \mathbf{p}_i)
if s > m
let m = s
let r = c_i (update most similar class prototype)
Return class r
```

5

### **Rocchio Properties**

- Does not guarantee a consistent hypothesis.
- Forms a simple generalization of the examples in each class (a *prototype*).
- Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
- Classification is based on similarity to class prototypes.

### Rocchio Time Complexity

- Note: The time to add two sparse vectors is proportional to minimum number of non-zero entries in the two vectors.
- Training Time:  $O(|D|(L_d + |V_d|)) = O(|D| L_d)$  where  $L_d$  is the average length of a document in D and  $|V_d|$  is the average vocabulary size for a document in D.
- Test Time:  $O(L_t + |C||V_t|)$  where  $L_t$  is the average length of a test document and  $|V_t|$  is the average vocabulary size for a test document.
  - Assumes lengths of p<sub>i</sub> vectors are computed and stored during training, allowing cosSim(d, p<sub>i</sub>) to be computed in time proportional to the number of non-zero entries in d (i.e. |V<sub>i</sub>|)

7

### Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in *D*.
- Testing instance *x*:
  - Compute similarity between x and all examples in D.
  - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- · Also called:
  - Case-based
  - Memory-based
  - Lazy learning

8

### K Nearest-Neighbor

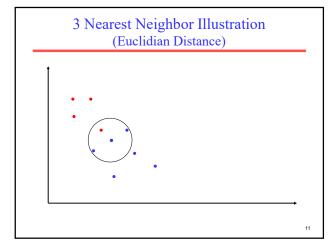
- Using only the closest example to determine categorization is subject to errors due to:
  - A single atypical example.
  - Noise (i.e. error) in the category label of a single training example.
- More robust alternative is to find the *k* most-similar examples and return the majority category of these *k* examples.
- Value of *k* is typically odd to avoid ties, 3 and 5 are most common.

### Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous *m*-dimensional instance space is *Euclidian distance*.
- Simplest for *m*-dimensional binary instance space is *Hamming distance* (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

10

10



11

Illustration of 3 Nearest Neighbor for Text

### K Nearest Neighbor for Text

For each each training example  $\langle x, c(x) \rangle \in D$ Compute the corresponding TF-IDF vector,  $\mathbf{d}_x$ , for document x

### Test instance y:

Compute TF-IDF vector  $\mathbf{d}$  for document y

For each  $\langle x, c(x) \rangle \in D$ 

Let  $s_x = \cos \operatorname{Sim}(\mathbf{d}, \mathbf{d}_x)$ 

Sort examples, x, in D by decreasing value of  $s_x$ 

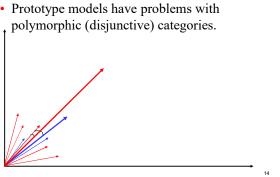
Let N be the first k examples in D. (get most similar neighbors)

Return the majority class of examples in N

13

### Rocchio Anomoly

• Prototype models have problems with



14

### 3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle polymorphic categories better.



### Nearest Neighbor Time Complexity

- Training Time:  $O(|D| L_d)$  to compose TF-IDF vectors.
- Testing Time:  $O(L_t + |D||V_t|)$  to compare to all training vectors.
  - Assumes lengths of  $\mathbf{d}_x$  vectors are computed and stored during training, allowing  $\cos \operatorname{Sim}(\mathbf{d}, \mathbf{d}_x)$  to be computed in time proportional to the number of non-zero entries in  $\mathbf{d}$  (i.e.  $|V_t|$ )
- Testing time can be high for large training

16

16

### Nearest Neighbor with Inverted Index

- Determining k nearest neighbors is the same as determining the k best retrievals using the test document as a query to a database of training documents.
- Use standard VSR inverted index methods to find the *k* nearest neighbors.
- Testing Time:  $O(B|V_t|)$  where B is the average number of training documents in which a test-document word appears.
- Therefore, overall classification is O(L<sub>t</sub> + B|V<sub>t</sub>|)
   Typically B << |D|</li>

17

17

### **Bayesian Methods**

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses *prior* probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

### Axioms of Probability Theory

- All probabilities between 0 and 1  $0 \le P(A) \le 1$
- True proposition has probability 1, false has probability 0.

$$P(true) = 1$$
  $P(false) = 0$ .

• The probability of disjunction is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$



19

19

### **Conditional Probability**

- $P(A \mid B)$  is the probability of A given B
- Assumes that *B* is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$



20

20

### Independence

• *A* and *B* are *independent* iff:

$$P(A | B) = P(A)$$
 These two constraints are logically equivalent  $P(B | A) = P(B)$ 

• Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

### Joint Distribution

 The joint probability distribution for a set of random variables, X<sub>1</sub>,...,X<sub>n</sub> gives the probability of every combination of values (an n-dimensional array with v<sup>n</sup> values if all variables are discrete with v values, all v<sup>n</sup> values must sum to 1): P(X<sub>1</sub>,...,X<sub>n</sub>)

|   |      | positive |        |
|---|------|----------|--------|
| Γ |      | circle   | square |
| Γ | red  | 0.20     | 0.02   |
|   | blue | 0.02     | 0.01   |

|     |      | negative |        |  |
|-----|------|----------|--------|--|
|     |      | circle   | square |  |
|     | red  | 0.05     | 0.30   |  |
|     | blue | 0.20     | 0.20   |  |
| . ' |      | · · ·    | . C 1  |  |

 The probability of all possible conjunctions (assignments of values to some subset of variables) can be calculated by summing the appropriate subset of values from the joint distribution.

$$P(red \land circle) = 0.20 + 0.05 = 0.25$$
  
 $P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$ 

• Therefore, all conditional probabilities can also be calculated.  $P(positive \mid red \land circle) = \frac{P(positive \land red \land circle)}{P(red \land circle)} = \frac{0.20}{0.25} = 0.80$ 

30

22

### **Probabilistic Classification**

- Let *Y* be the random variable for the class which takes values  $\{y_1, y_2, \dots, y_m\}$ .
- Let X be the random variable describing an instance consisting of a vector of values for n features  $\langle X_1, X_2, \dots X_n \rangle$ , let  $x_k$  be a possible value for X and  $x_{ij}$  a possible value for  $X_i$ .
- For classification, we need to compute  $P(Y=y_i | X=x_k)$  for i=1...m
- However, given no other assumptions, this requires a table giving the probability of each category for each possible instance in the instance space, which is impossible to accurately estimate from a reasonably-sized training set.
  - Assuming Y and all  $X_i$  are binary, we need  $2^n$  entries to specify  $P(Y=pos \mid X=x_k)$  for each of the  $2^n$  possible  $x_k$ 's since  $P(Y=neg \mid X=x_k) = 1 P(Y=pos \mid X=x_k)$
  - Compared to  $2^{n+1} 1$  entries for the joint distribution  $P(Y, X_1, X_2, ..., X_n)$

23

23

### **Bayes Theorem**

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)}$$
 (Def. cond. prob.)  

$$P(E \mid H) = \frac{P(H \land E)}{P(H)}$$
 (Def. cond. prob.)  

$$P(H \land E) = P(E \mid H)P(H)$$

**QED:** 
$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

### **Bayesian Categorization**

• Determine category of  $x_k$  by determining for each  $y_i$ 

$$P(Y = y_i \mid X = x_k) = \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)}$$

• P(X=x<sub>k</sub>) can be determined since categories are complete and disjoint.

$$\sum_{i=1}^{m} P(Y = y_i \mid X = x_k) = \sum_{i=1}^{m} \frac{P(Y = y_i)P(X = x_k \mid Y = y_i)}{P(X = x_k)} = 1$$

$$P(X = x_k) = \sum_{i=1}^{m} P(Y = y_i) P(X = x_k | Y = y_i)$$

25

25

### Bayesian Categorization (cont.)

- · Need to know:
  - Priors:  $P(Y=y_i)$
  - Conditionals:  $P(X=x_k \mid Y=y_i)$
- $P(Y=y_i)$  are easily estimated from data.
  - If  $n_i$  of the examples in D are in  $y_i$  then  $P(Y=y_i) = n_i/|D|$
- Too many possible instances (e.g.  $2^n$  for binary features) to estimate all  $P(X=x_k \mid Y=y_i)$ .
- Still need to make some sort of independence assumptions about the features to make learning tractable.

26

26

### Generative Probabilistic Models

- Assume a simple (usually unrealistic) probabilistic method by which the data was generated.
- For categorization, each category has a different parameterized generative model that characterizes that category
- Training: Use the data for each category to estimate the parameters of the generative model for that category.
  - Maximum Likelihood Estimation (MLE): Set parameters to maximize the probability that the model produced the given training data.
  - If  $M_{\lambda}$  denotes a model with parameter values  $\lambda$  and  $D_k$  is the training data for the kth class, find model parameters for class k ( $\lambda_k$ ) that maximize the likelihood of  $D_k$ :

$$\lambda_k = \operatorname{argmax} P(D_k \mid M_{\lambda})$$

 Testing: Use Bayesian analysis to determine the category model that most likely generated a specific test instance.

### Naïve Bayes Generative Model



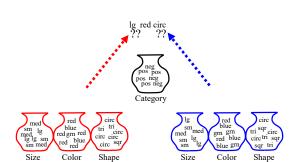




Negative

28

### Naïve Bayes Inference Problem



29

Positive

### Naïve Bayesian Categorization

 If we assume features of an instance are independent given the category (conditionally independent).

$$P(X | Y) = P(X_1, X_2, \dots X_n | Y) = \prod_{i=1}^{n} P(X_i | Y)$$

- Therefore, we then only need to know  $P(X_i \mid Y)$  for each possible pair of a feature-value and a category.
- If Y and all X<sub>i</sub> and binary, this requires specifying only 2n parameters:
  - $P(X_i = \text{true} \mid Y = \text{true})$  and  $P(X_i = \text{true} \mid Y = \text{false})$  for each  $X_i$
  - $P(X_i = \text{false} \mid Y) = 1 P(X_i = \text{true} \mid Y)$
- Compared to specifying 2<sup>n</sup> parameters without any independence assumptions.

### Naïve Bayes Example

| Probability     | positive | negative |
|-----------------|----------|----------|
| P(Y)            | 0.5      | 0.5      |
| P(small   Y)    | 0.4      | 0.4      |
| P(medium   Y)   | 0.1      | 0.2      |
| P(large   Y)    | 0.5      | 0.4      |
| P(red   Y)      | 0.9      | 0.3      |
| P(blue   Y)     | 0.05     | 0.3      |
| P(green   Y)    | 0.05     | 0.4      |
| P(square   Y)   | 0.05     | 0.4      |
| P(triangle   Y) | 0.05     | 0.3      |
| P(circle   Y)   | 0.9      | 0.3      |

Test Instance: <medium ,red, circle>

31

### Naïve Bayes Example

| Probability   | positive | negative |  |  |
|---------------|----------|----------|--|--|
| P(Y)          | 0.5      | 0.5      |  |  |
| P(medium   Y) | 0.1      | 0.2      |  |  |
| P(red   Y)    | 0.9      | 0.3      |  |  |
| P(circle   Y) | 0.9      | 0.3      |  |  |

Test Instance: <medium, red, circle>

 $P(positive \mid X) = P(positive)*P(medium \mid positive)*P(red \mid positive)*P(circle \mid positive) / P(X) \\ 0.5 * 0.1 * 0.9 * 0.9$ = 0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181

 $P(\text{negative} \mid \mathcal{X}) = P(\text{negative}) * P(\text{medium} \mid \text{negative}) * P(\text{red} \mid \text{negative}) * P(\text{circle} \mid \text{negative}) \ / \ P(\mathcal{X}) \\ 0.5 * 0.2 * 0.3 * 0.3 * 0.3$ 0.5 \* 0.2 \* 0.0 = 0.009 / P(X) = 0.009 / 0.0495 = 0.1818

 $P(positive \mid X) + P(negative \mid X) = 0.0405 / P(X) + 0.009 / P(X) = 1$ 

P(X) = (0.0405 + 0.009) = 0.0495

32

### **Estimating Probabilities**

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains  $n_k$  examples in category  $y_k$ , and  $n_{ijk}$  of these  $n_k$  examples have the jth value for feature  $X_i$ ,  $x_{ij}$ , then:

$$P(X_i = x_{ij} \mid Y = y_k) = \frac{n_{ijk}}{n}$$

- $P(X_i = x_{ij} \mid Y = y_k) = \frac{n_{ijk}}{n_k}$  However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature,  $X_i$ , is always false in the training data,  $\forall y_k : P(X_i = \text{true} \mid Y = y_k) = 0$ .
- If  $X_i$ =true then occurs in a test example, X, the result is that  $\forall y_k$ :  $P(X \mid Y=y_k) = 0$  and  $\forall y_k$ :  $P(Y=y_k \mid X) = 0$

### **Probability Estimation Example**

| Ex               | Size  | Color      | Shape           | Category | Probability   | positive | negative |
|------------------|-------|------------|-----------------|----------|---------------|----------|----------|
| LX               | Size  | Color      | Shape           | Category | P( <i>Y</i> ) | 0.5      | 0.5      |
| 1                | small | red        | circle          | positive | P(small   Y)  | 0.5      | 0.5      |
| 2 large          | 1     | 1          | circle          |          | P(medium   Y) | 0.0      | 0.0      |
|                  | large | red circle | circie          | positive | P(large   Y)  | 0.5      | 0.5      |
| 3 sm             | small | red        | triangle        | negative | P(red   Y)    | 1.0      | 0.5      |
|                  |       |            |                 |          | P(blue   Y)   | 0.0      | 0.5      |
| 4                | large | blue       | circle          | negative | P(green   Y)  | 0.0      | 0.0      |
|                  |       |            | P(square   Y)   | 0.0      | 0.0           |          |          |
| Test Instance X: |       |            | P(triangle   Y) | 0.0      | 0.5           |          |          |
|                  |       |            | P(circle   Y)   | 1.0      | 0.5           |          |          |

P(positive | X) = 0.5 \* 0.0 \* 1.0 \* 1.0 / P(X) = 0 P(negative | X) = 0.5 \* 0.0 \* 0.5 \* 0.5 / P(X) = 0

34

34

### Smoothing

- To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.

$$P(X_i = x_{ij} | Y = y_k) = \frac{n_{ijk} + mp}{n_k + m}$$

• For binary features, p is simply assumed to be 0.5.

3

35

### Laplace Smothing Example

- Assume training set contains 10 positive examples:
  - 4: small
  - 0: medium
  - 6: large
- Estimate parameters as follows (if m=1, p=1/3)
  - $P(small \mid positive) = (4 + 1/3) / (10 + 1) = 0.394$
  - P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
  - $P(large \mid positive) = (6 + 1/3) / (10 + 1) = 0.576$
  - P(small or medium or large | positive) = 1.0

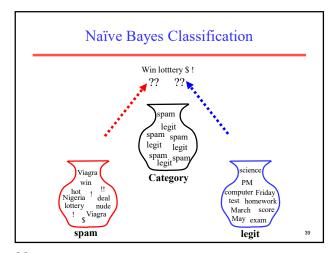
### Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary  $V = \{w_1, w_2, ... w_m\}$  based on the probabilities  $P(w_i | c_i)$ .
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|
  - Equivalent to a virtual sample of seeing each word in each category exactly once.

37

37

# Naïve Bayes Generative Model for Text | Spam | legit | spam | spam | legit | legit | spam | spam | spam | legit | spam | sp



# Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category  $c_i \in C$ 

Let  $D_i$  be the subset of documents in D in category  $c_i$  $P(c_i) = |D_i| / |D|$ 

Let  $T_i$  be the concatenation of all the documents in  $D_i$ Let  $n_i$  be the total number of word occurrences in  $T_i$ For each word  $w_i \in V$ 

Let  $n_{ij}$  be the number of occurrences of  $w_j$  in  $T_i$ Let  $P(w_j | c_i) = (n_{ij} + 1) / (n_i + |V|)$ 

40

40

# Text Naïve Bayes Algorithm (Test)

Given a test document XLet n be the number of word occurrences in X

$$\operatorname{argmax} P(c_i) \prod_{i=1}^{n} P(a_i \mid c_i)$$

Return the category:

where  $a_i$  is the word occurring the *i*th position in X

41

41

### **Underflow Prevention**

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

### Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not.
  - Output probabilities are generally very close to 0 or 1.

43

43

### **Evaluating Categorization**

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
- Results can vary based on sampling error due to different training and test sets.
- Average results over multiple training and test sets (splits of the overall data) for the best results.

44

44

### N-Fold Cross-Validation

- Ideally, test and training sets are independent on each trial.
  - But this would require too much labeled data.
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time using a different segment of the data for testing, and training on the remaining N-1 segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the *N*
- Typically, N = 10.

### **Learning Curves**

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- *Learning curves* plot classification accuracy on independent test data (*Y* axis) versus number of training examples (*X* axis).

46

46

### *N*-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use *N*-fold cross validation to generate *N* full training and test sets.
- For each trial, train on increasing fractions of the training set, measuring accuracy on the test data for each point on the desired learning curve.

47

