Text Properties and Languages

Statistical Properties of Text

- How is the frequency of different words distributed?
- How fast does vocabulary size grow with the size of a corpus?
- Such factors affect the performance of information retrieval and can be used to select appropriate term weights and other aspects of an IR system.

Word Frequency

- A few words are very common.
 - 2 most frequent words (e.g. “the”, “of”) can account for about 10% of word occurrences.
- Most words are very rare.
 - Half the words in a corpus appear only once, called *hapax legomena* (Greek for “read only once”)
- Called a “heavy tailed” or “long tailed” distribution, since most of the probability mass is in the “tail” compared to an exponential distribution.
Sample Word Frequency Data
(from B. Croft, UMass)

<table>
<thead>
<tr>
<th>Frequent Word</th>
<th>Number of Occurrences</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>7,208,934</td>
<td>5.0</td>
</tr>
<tr>
<td>of</td>
<td>3,693,790</td>
<td>2.1</td>
</tr>
<tr>
<td>to</td>
<td>3,564,653</td>
<td>2.7</td>
</tr>
<tr>
<td>and</td>
<td>3,220,687</td>
<td>2.6</td>
</tr>
<tr>
<td>in</td>
<td>2,311,785</td>
<td>1.8</td>
</tr>
<tr>
<td>is</td>
<td>1,598,147</td>
<td>1.2</td>
</tr>
<tr>
<td>for</td>
<td>1,313,561</td>
<td>1.0</td>
</tr>
<tr>
<td>The</td>
<td>1,144,060</td>
<td>0.9</td>
</tr>
<tr>
<td>that</td>
<td>1,066,503</td>
<td>0.8</td>
</tr>
<tr>
<td>said</td>
<td>1,027,713</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Frequencies from 336,310 documents in the 1GB TRIEC Volume 3 Corpus. 125,720,891 total word occurrences; 508,209 unique words.

Zipf’s Law

- Rank \(r \): The numerical position of a word in a list sorted by decreasing frequency \(f \).
- Zipf (1949) “discovered” that:
 \[
 f \propto \frac{1}{r} \quad f \cdot r = k \quad \text{for constant } k
 \]
- If probability of word of rank \(r \) is \(p_r \) and \(N \) is the total number of word occurrences:
 \[
 p_r = \frac{f}{N} = \frac{A}{r} \quad \text{for corpus indep. const. } A = 0.1
 \]

Zipf and Term Weighting

- Luhn (1958) suggested that both extremely common and extremely uncommon words were not very useful for indexing.
Prevalence of Zipfian Laws

• Many items exhibit a Zipfian distribution.
 – Population of cities
 – Wealth of individuals
 • Discovered by sociologist/economist Pareto in 1909
 – Popularity of books, movies, music, web-pages, etc.
 – Popularity of consumer products
 • Chris Anderson’s “long tail”

Predicting Occurrence Frequencies

• By Zipf, a word appearing \(n \) times has rank \(r_n = \frac{AN}{n} \)
• Several words may occur \(n \) times, assume rank \(r_n \) applies to the last of these.
• Therefore, \(r_n \) words occur \(n \) or more times and \(r_{n+1} \) words occur \(n+1 \) or more times.
• So, the number of words appearing exactly \(n \) times is:
 \[
 I_n = r_n - r_{n+1} = \frac{AN}{n} - \frac{AN}{n+1} = \frac{AN}{n(n+1)}
 \]

Predicting Word Frequencies (cont)

• Assume highest ranking term occurs once and therefore has rank \(D = \frac{AN}{1} \)
• Fraction of words with frequency \(n \) is:
 \[
 \frac{I_n}{D} = \frac{1}{n(n+1)}
 \]
• Fraction of words appearing only once is therefore \(\frac{1}{2} \).
Occurrence Frequency Data
(from B. Croft, UMass)

<table>
<thead>
<tr>
<th>Number of Occurrences (n)</th>
<th>Predicted Proportion of Occurrences 1/(n(n+1))</th>
<th>Actual Proportion occurring n times</th>
<th>Actual Number of Words occurring n times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.900</td>
<td>.402</td>
<td>204,387</td>
</tr>
<tr>
<td>2</td>
<td>.107</td>
<td>.322</td>
<td>67,082</td>
</tr>
<tr>
<td>3</td>
<td>.033</td>
<td>.069</td>
<td>35,083</td>
</tr>
<tr>
<td>4</td>
<td>.050</td>
<td>.046</td>
<td>23,271</td>
</tr>
<tr>
<td>5</td>
<td>.033</td>
<td>.032</td>
<td>16,332</td>
</tr>
<tr>
<td>6</td>
<td>.024</td>
<td>.024</td>
<td>12,421</td>
</tr>
<tr>
<td>7</td>
<td>.018</td>
<td>.019</td>
<td>9,766</td>
</tr>
<tr>
<td>8</td>
<td>.014</td>
<td>.016</td>
<td>8,203</td>
</tr>
<tr>
<td>9</td>
<td>.011</td>
<td>.014</td>
<td>6,907</td>
</tr>
<tr>
<td>10</td>
<td>.009</td>
<td>.012</td>
<td>5,893</td>
</tr>
</tbody>
</table>

Frequencies from 336,210 documents in the TREC Volume 3 Corpus
125,720,891 total word occurrences; 588,269 unique words

Does Real Data Fit Zipf’s Law?

- A law of the form \(y = kx^c \) is called a power law.
- Zipf’s law is a power law with \(c = -1 \)
- On a log-log plot, power laws give a straight line with slope \(c \).
 \[
 \log(y) = \log(kx^c) = \log k + c \log(x)
 \]
- Zipf is quite accurate except for very high and low rank.

Fit to Zipf for Brown Corpus
Mandelbrot (1954) Correction

- The following more general form gives a bit better fit:

\[f = P(r + \rho)^{-B} \]

For constants \(P, B, \rho \)

Mandelbrot Fit

Explanations for Zipf’s Law

- Zipf’s explanation was his “principle of least effort.” Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.

- Debate (1955-61) between Mandelbrot and H. Simon over explanation.

- Simon explanation is “rich get richer.”

- Li (1992) shows that just random typing of letters including a space will generate “words” with a Zipfian distribution.

\[\text{http://linkage-rockefeller.edu/wli/zipf/} \]
Zipf's Law Impact on IR

Good News:
- Stopwords will account for a large fraction of text so eliminating them greatly reduces inverted-index storage costs.
- Postings list for most remaining words in the inverted index will be short since they are rare, making retrieval fast.

Bad News:
- For most words, gathering sufficient data for meaningful statistical analysis (e.g., for correlation analysis for query expansion) is difficult since they are extremely rare.

Vocabulary Growth

- How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?
- This determines how the size of the inverted index will scale with the size of the corpus.
- Vocabulary not really upper-bounded due to proper names, typos, etc.

Heaps' Law

- If V is the size of the vocabulary and the n is the length of the corpus in words:
 \[V = Kn^\beta \]
 with constants K, $0 < \beta < 1$

- Typical constants:
 - $K \approx 10^{10}$
 - $\beta \approx 0.4-0.6$ (approx. square-root)
Heaps’ Law Data

Explanation for Heaps’ Law

• Can be derived from Zipf’s law by assuming documents are generated by randomly sampling words from a Zipfian distribution.

Metadata

• Information about a document that may not be a part of the document itself (data about data).
• Descriptive metadata is external to the meaning of the document:
 – Author
 – Title
 – Source (book, magazine, newspaper, journal)
 – Date
 – ISBN
 – Publisher
 – Length
Metadata (cont)

- **Semantic** metadata concerns the content:
 - Abstract
 - Keywords
 - Subject Codes
 - Library of Congress
 - Dewey Decimal
 - UMLS (Unified Medical Language System)
- Subject terms may come from specific **ontologies** (hierarchical taxonomies of standardized semantic terms).

Web Metadata

- **META tag in HTML**
 - `<META NAME="keywords" CONTENT="pets, cats, dogs">
- **META “HTTP-EQUIV” attribute** allows server or browser to access information:
 - `<META HTTP-EQUIV="expires" CONTENT="Tue, 01 Jan 02">
 - `<META HTTP-EQUIV="creation-date" CONTENT="23-Sep-01">

Markup Languages

- Language used to annotate documents with “tags” that indicate layout or semantic information.
- Most document languages (Word, RTF, Latex, HTML) primarily define **layout**.
- History of Generalized Markup Languages:
 - SGML (1985)
 - XML (1998)
 - HTML (1993)
 - HyperText
 - GML (1969)
Basic SGML Document Syntax

- Blocks of text surrounded by start and end tags.
 - `<tagname attribute=value attribute=value …>`
 - `</tagname>`
- Tagged blocks can be nested.
- In HTML end tag is not always necessary, but in XML it is.

HTML

- Developed for hypertext on the web.
 - ``
- May include code such as Javascript in Dynamic HTML (DHTML).
- Separates layout somewhat by using style sheets (Cascade Style Sheets, CSS).
- However, primarily defines layout and formatting.

XML

- Like SGML, a metalanguage for defining specific document languages.
- Simplification of original SGML for the web promoted by WWW Consortium (W3C).
- Fully separates semantic information and layout.
- Provides structured data (such as a relational DB) in a document format.
- Replacement for an explicit database schema.
XML (cont)

- Allows programs to easily interpret information in a document, as opposed to HTML intended as layout language for formatting docs for human consumption.
- New tags are defined as needed.
- Structures can be nested arbitrarily deep.
- Separate (optional) *Document Type Definition* (DTD) defines tags and document grammar.