Text Properties and Languages
Statistical Properties of Text

• How is the frequency of different words distributed?
• How fast does vocabulary size grow with the size of a corpus?
• Such factors affect the performance of information retrieval and can be used to select appropriate term weights and other aspects of an IR system.
Word Frequency

• A few words are very common.
 – 2 most frequent words (e.g. “the”, “of”) can account for about 10% of word occurrences.

• Most words are very rare.
 – Half the words in a corpus appear only once, called hapax legomena (Greek for “read only once”)

• Called a “heavy tailed” or “long tailed” distribution, since most of the probability mass is in the “tail” compared to an exponential distribution.
Sample Word Frequency Data
(from B. Croft, UMass)

<table>
<thead>
<tr>
<th>Frequent Word</th>
<th>Number of Occurrences</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>7,398,934</td>
<td>5.9</td>
</tr>
<tr>
<td>of</td>
<td>3,893,790</td>
<td>3.1</td>
</tr>
<tr>
<td>to</td>
<td>3,364,653</td>
<td>2.7</td>
</tr>
<tr>
<td>and</td>
<td>3,320,687</td>
<td>2.6</td>
</tr>
<tr>
<td>in</td>
<td>2,311,785</td>
<td>1.8</td>
</tr>
<tr>
<td>is</td>
<td>1,559,147</td>
<td>1.2</td>
</tr>
<tr>
<td>for</td>
<td>1,313,561</td>
<td>1.0</td>
</tr>
<tr>
<td>The</td>
<td>1,144,860</td>
<td>0.9</td>
</tr>
<tr>
<td>that</td>
<td>1,066,503</td>
<td>0.8</td>
</tr>
<tr>
<td>said</td>
<td>1,027,713</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words
Zipf’s Law

• Rank \((r) \): The numerical position of a word in a list sorted by decreasing frequency \((f) \).

• Zipf (1949) “discovered” that:

\[
f \propto \frac{1}{r} \quad f \cdot r = k \quad \text{(for constant } k)\]

• If probability of word of rank \(r \) is \(p_r \) and \(N \) is the total number of word occurrences:

\[
p_r = \frac{f}{N} = \frac{A}{r} \quad \text{for corpus indp. const. } A \approx 0.1\]
Zipf and Term Weighting

• Luhn (1958) suggested that both extremely common and extremely uncommon words were not very useful for indexing.
Prevalence of Zipfian Laws

• Many items exhibit a Zipfian distribution.
 – Population of cities
 – Wealth of individuals
 • Discovered by sociologist/economist Pareto in 1909
 – Popularity of books, movies, music, web-pages, etc.
 – Popularity of consumer products
 • Chris Anderson’s “long tail”
Does Real Data Fit Zipf’s Law?

• A law of the form \(y = kx^c \) is called a power law.
• Zipf’s law is a power law with \(c = -1 \)
• On a log-log plot, power laws give a straight line with slope \(c \).

\[
\log(y) = \log(kx^c) = \log k + c \log(x)
\]

• Zipf is quite accurate except for very high and low rank.
Fit to Zipf for Brown Corpus

$k = 100,000$
Mandelbrot (1954) Correction

- The following more general form gives a bit better fit:

\[f = P(r + \rho)^{-B} \quad \text{For constants } P, B, \rho \]
Mandelbrot Fit

Mandelbrot’s function on Brown corpus
\[P = 10^{5.4}, B = 1.15, \rho = 100 \]
Explanations for Zipf’s Law

• Zipf’s explanation was his “principle of least effort.” Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.

• Debate (1955-61) between Mandelbrot and H. Simon over explanation.

• Simon explanation is “rich get richer.”

• Li (1992) shows that just random typing of letters including a space will generate “words” with a Zipfian distribution.

 – http://linkage.rockefeller.edu/wli/zipf/
Zipf’s Law Impact on IR

• **Good News:**
 – Stopwords will account for a large fraction of text so eliminating them greatly reduces inverted-index storage costs.
 – Postings list for most remaining words in the inverted index will be short since they are rare, making retrieval fast.

• **Bad News:**
 – For most words, gathering sufficient data for meaningful statistical analysis (e.g. for correlation analysis for query expansion) is difficult since they are extremely rare.
Vocabulary Growth

• How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?
• This determines how the size of the inverted index will scale with the size of the corpus.
• Vocabulary not really upper-bounded due to proper names, typos, etc.
Heaps’ Law

• If V is the size of the vocabulary and the n is the length of the corpus in words:

$$V = Kn^\beta$$

with constants K, $0 < \beta < 1$

• Typical constants:
 - $K \approx 10–100$
 - $\beta \approx 0.4–0.6$ (approx. square-root)
Heaps’ Law Data
Explanation for Heaps’ Law

- Can be derived from Zipf’s law by assuming documents are generated by randomly sampling words from a Zipfian distribution.