CS 371R: IR and Web Search: Language Models

Raymond J. Mooney

University of Texas at Austin

Language Models

- Formal grammars (e.g. regular, context free) give a hard "binary" model of the legal sentences in a language.
- For NLP, a *probabilistic* model of a language that gives a probability that a string is a member of a language is more useful.
- To specify a correct probability distribution, the probability of all sentences in a language must sum to 1.

Uses of Language Models

- Speech recognition
 - "I ate a cherry" is a more likely sentence than "Eye eight uh Jerry"
- OCR & Handwriting recognition
 - More probable sentences are more likely correct readings.
- Machine translation
 - More likely sentences are probably better translations.
- Generation
 - More likely sentences are probably better NL generations.
- Context sensitive spelling correction
 - "Their are problems wit this sentence."

Completion Prediction

- A language model also supports predicting the completion of a sentence.
 - Please turn off your cell
 - Your program does not _____
- Predictive text input systems can guess what you are typing and give choices on how to complete it.

N-Gram Models

- Estimate probability of each word given prior context.
 - P(phone | Please turn off your cell)
- Number of parameters required grows exponentially with the number of words of prior context.
- An N-gram model uses only N-1 words of prior context.
 - Unigram: P(phone)
 - Bigram: P(phone | cell)
 - Trigram: P(phone | your cell)
- The *Markov assumption* is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a *kth-order Markov model*, the next state only depends on the *k* most recent states, therefore an N-gram model is a (N–1)-order Markov model.

N-Gram Model Formulas

Word sequences

$$w_1^n = w_1...w_n$$

Chain rule of probability

$$P(w_1^n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1^2)...P(w_n \mid w_1^{n-1}) = \prod_{k=1}^n P(w_k \mid w_1^{k-1})$$

Bigram approximation

$$P(w_1^n) = \prod_{k=1}^n P(w_k \mid w_{k-1})$$

N-gram approximation

$$P(w_1^n) = \prod_{k=1}^n P(w_k \mid w_{k-N+1}^{k-1})$$

Estimating Probabilities

• N-gram conditional probabilities can be estimated from raw text based on the *relative frequency* of word sequences.

Bigram:
$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

N-gram:
$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1} w_n)}{C(w_{n-N+1}^{n-1})}$$

• To have a consistent probabilistic model, append a unique start (<s>) and end (</s>) symbol to every sentence and treat these as additional words.

Generative Model & MLE

• An N-gram model can be seen as a probabilistic automata for generating sentences.

Initialize sentence with N-1 <s> symbols
Until </s> is generated do:
Stochastically pick the next word based on the conditional probability of each word given the previous N -1 words.

• Relative frequency estimates can be proven to be *maximum likelihood estimates* (MLE) since they maximize the probability that the model *M* will generate the training corpus *T*.

$$\hat{\lambda} = \operatorname{argmax} P(T \mid M(\lambda))$$

Example from NLP Textbook

- P(<s> i want english food </s>)
 - = P(i | <s>) P(want | i) P(english | want)
 - P(food | english) P(</s> | food)
 - $= .25 \times .33 \times .0011 \times .5 \times .68 = .000031$
- P(<s> i want chinese food </s>)
 - = P(i | <s>) P(want | i) P(chinese | want)
 - P(food | chinese) P(</s> | food)
 - $= .25 \times .33 \times .0065 \times .52 \times .68 = .00019$

Laplace (Add-One) Smoothing

• "Hallucinate" additional training data in which each possible N-gram occurs exactly once and adjust estimates accordingly.

Bigram:
$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

N-gram:
$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n) + 1}{C(w_{n-N+1}^{n-1}) + V}$$

where V is the total number of possible (N-1)-grams (i.e. the vocabulary size for a bigram model).

• Tends to reassign too much mass to unseen events, so can be adjusted to add $0<\delta<1$ (normalized by δV instead of V).

Advanced Smoothing

- Many advanced techniques have been developed to improve smoothing for language models.
 - Good-Turing
 - Interpolation
 - Backoff
 - Kneser-Ney
 - Class-based (cluster) N-grams

A Problem for N-Grams: Long Distance Dependencies

- Many times local context does not provide the most useful predictive clues, which instead are provided by *long-distance dependencies*.
 - Syntactic dependencies
 - "The *man* next to the large oak tree near the grocery store on the corner is tall."
 - "The *men* next to the large oak tree near the grocery store on the corner **are** tall."
 - Semantic dependencies
 - "The *bird* next to the large oak tree near the grocery store on the corner **flies** rapidly."
 - "The *man* next to the large oak tree near the grocery store on the corner **talks** rapidly."
- More complex models of language are needed to handle such dependencies.

Summary

- Language models assign a probability that a sentence is a legal string in a language.
- They are useful as a component of many NLP systems, such as ASR, OCR, and MT.
- Simple N-gram models are easy to train on unsupervised corpora and can provide useful estimates of sentence likelihood.
- MLE gives inaccurate parameters for models trained on sparse data.
- Smoothing techniques adjust parameter estimates to account for unseen (but not impossible) events.