Language Models

- Formal grammars (e.g. regular, context free) give a hard “binary” model of the legal sentences in a language.
- For NLP, a probabilistic model of a language that gives a probability that a string is a member of a language is more useful.
- To specify a correct probability distribution, the probability of all sentences in a language must sum to 1.

Uses of Language Models

- Speech recognition
 - “I ate a cherry” is a more likely sentence than “Eye eight uh Jerry”
- OCR & Handwriting recognition
 - More probable sentences are more likely correct readings.
- Machine translation
 - More likely sentences are probably better translations.
- Generation
 - More likely sentences are probably better NL generations.
- Context sensitive spelling correction
 - “Their are problems wit this sentence.”
Completion Prediction

- A language model also supports predicting the completion of a sentence.
 - Please turn off your cell _____
 - Your program does not _____
- Predictive text input systems can guess what you are typing and give choices on how to complete it.

N-Gram Models

- Estimate probability of each word given prior context.
 - \(P(\text{phone} \mid \text{Please turn off your cell}) \)
- Number of parameters required grows exponentially with the number of words of prior context.
- An N-gram model uses only N–1 words of prior context.
 - Unigram: \(P(\text{phone}) \)
 - Bigram: \(P(\text{phone} \mid \text{cell}) \)
 - Trigram: \(P(\text{phone} \mid \text{your cell}) \)
- The Markov assumption is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a \(k \)-th-order Markov model, the next state only depends on the \(k \) most recent states, therefore an N-gram model is a (N–1)-order Markov model.

N-Gram Model Formulas

- Word sequences
 \(w^*_n = w_1...w_n \)
- Chain rule of probability
 \[P(w^*_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1w_2)P(w_4 \mid w_1w_2w_3) \cdots = \prod_{i=1}^{n} P(w_i \mid w_{i-1}) \]
- Bigram approximation
 \[P(w^*_n) = \prod_{i=1}^{n-1} P(w_i \mid w_{i-1}) \]
- N-gram approximation
 \[P(w^*_n) = \prod_{i=1}^{n-2} P(w_i \mid w_{i-2...i-1}) \]
Estimating Probabilities

- N-gram conditional probabilities can be estimated from raw text based on the relative frequency of word sequences.

\[
P(w_t | w_{t \Delta}) = \frac{C(w_t, w_{t \Delta})}{C(w_{t \Delta})}
\]

Bigram:
\[
P(w_t | w_{t \Delta}) = \frac{C(w_t, w_{t \Delta})}{C(w_{t \Delta})}
\]

N-gram:
\[
P(w_t | w_{t \Delta}) = \frac{C(w_t, w_{t \Delta}, w_\Delta)}{C(w_{t \Delta}, w_\Delta)}
\]

- To have a consistent probabilistic model, append a unique start (<s>) and end (</s>) symbol to every sentence and treat these as additional words.

Generative Model & MLE

- An N-gram model can be seen as a probabilistic automata for generating sentences.

 Initialize sentence with N−1 <s> symbols

 Until </s> is generated do:

 Stochastically pick the next word based on the conditional probability of each word given the previous N−1 words.

- Relative frequency estimates can be proven to be maximum likelihood estimates (MLE) since they maximize the probability that the model M will generate the training corpus T.

\[\hat{\lambda} = \arg\max_{\lambda} P(T | M(\lambda))\]

Example from NLP Textbook

- \(P(<s> i want english food </s>)\)

 \[P(i | <s>) P(want | i) P(english | want)\]

 \[P(food | english) P(<s> | food)\]

 \[=.25 \times .33 \times .0011 \times .5 \times .68 = .000031\]

- \(P(<s> i want chinese food </s>)\)

 \[P(i | <s>) P(want | i) P(chinese | want)\]

 \[P(food | chinese) P(<s> | food)\]

 \[=.25 \times .33 \times .0065 \times .52 \times .68 = .00019\]
Laplace (Add-One) Smoothing

• “Hallucinate” additional training data in which each possible N-gram occurs exactly once and adjust estimates accordingly.

\[
P(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1}) + V}
\]

where \(V \) is the total number of possible (N-1)-grams (i.e. the vocabulary size for a bigram model).

• Tends to reassign too much mass to unseen events, so can be adjusted to add 0<\(\delta \)<1 (normalized by \(\delta V \) instead of \(V \)).

Advanced Smoothing

• Many advanced techniques have been developed to improve smoothing for language models.
 – Good-Turing
 – Interpolation
 – Backoff
 – Kneser-Ney
 – Class-based (cluster) N-grams

A Problem for N-Grams: Long Distance Dependencies

• Many times local context does not provide the most useful predictive clues, which instead are provided by long-distance dependencies.
 – Syntactic dependencies
 * “The man next to the large oak tree near the grocery store on the corner is tall.”
 * “The man next to the large oak tree near the grocery store on the corner are tall.”
 – Semantic dependencies
 * “The bird next to the large oak tree near the grocery store on the corner flies rapidly.”
 * “The man next to the large oak tree near the grocery store on the corner talks rapidly.”

• More complex models of language are needed to handle such dependencies.
Summary

• Language models assign a probability that a sentence is a legal string in a language.
• They are useful as a component of many NLP systems, such as ASR, OCR, and MT.
• Simple N-gram models are easy to train on unsupervised corpora and can provide useful estimates of sentence likelihood.
• MLE gives inaccurate parameters for models trained on sparse data.
• Smoothing techniques adjust parameter estimates to account for unseen (but not impossible) events.