Basic equivalence relation for rulelist structures.
Function:
(defun rulelist-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (rulelistp acl2::x) (rulelistp acl2::y)))) (equal (rulelist-fix acl2::x) (rulelist-fix acl2::y)))
Theorem:
(defthm rulelist-equiv-is-an-equivalence (and (booleanp (rulelist-equiv x y)) (rulelist-equiv x x) (implies (rulelist-equiv x y) (rulelist-equiv y x)) (implies (and (rulelist-equiv x y) (rulelist-equiv y z)) (rulelist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm rulelist-equiv-implies-equal-rulelist-fix-1 (implies (rulelist-equiv acl2::x x-equiv) (equal (rulelist-fix acl2::x) (rulelist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm rulelist-fix-under-rulelist-equiv (rulelist-equiv (rulelist-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-rulelist-fix-1-forward-to-rulelist-equiv (implies (equal (rulelist-fix acl2::x) acl2::y) (rulelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-rulelist-fix-2-forward-to-rulelist-equiv (implies (equal acl2::x (rulelist-fix acl2::y)) (rulelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm rulelist-equiv-of-rulelist-fix-1-forward (implies (rulelist-equiv (rulelist-fix acl2::x) acl2::y) (rulelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm rulelist-equiv-of-rulelist-fix-2-forward (implies (rulelist-equiv acl2::x (rulelist-fix acl2::y)) (rulelist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)