Extension of the four-valued lattice ordering to sexprs.
We say
When
Theorem:
(defthm 4v-sexpr-<=-necc (implies (not (4v-<= (4v-sexpr-eval x env) (4v-sexpr-eval y env))) (not (4v-sexpr-<= x y))))
Theorem:
(defthm 4v-sexpr-<=-witnessing-witness-rule-correct (implies (not ((lambda (env y x) (not (4v-<=$inline (4v-sexpr-eval x env) (4v-sexpr-eval y env)))) (4v-sexpr-<=-witness x y) y x)) (4v-sexpr-<= x y)) :rule-classes nil)
Theorem:
(defthm 4v-sexpr-<=-instancing-instance-rule-correct (implies (not (4v-<=$inline (4v-sexpr-eval x env) (4v-sexpr-eval y env))) (not (4v-sexpr-<= x y))) :rule-classes nil)
Theorem:
(defthm 4v-sexpr-<=-nil (4v-sexpr-<= nil x))
Theorem:
(defthm 4v-sexpr-<=-refl (4v-sexpr-<= x x))
Theorem:
(defthm 4v-sexpr-<=-trans1 (implies (and (4v-sexpr-<= a b) (4v-sexpr-<= b c)) (4v-sexpr-<= a c)))
Theorem:
(defthm 4v-sexpr-<=-trans2 (implies (and (4v-sexpr-<= b c) (4v-sexpr-<= a b)) (4v-sexpr-<= a c)))