Convert a 4vp into a faig-const-p.
(4v->faig-const x) → *
Function:
(defun 4v->faig-const (x) (declare (xargs :guard t)) (let ((__function__ '4v->faig-const)) (declare (ignorable __function__)) (cond ((eq x (4vt)) (faig-t)) ((eq x (4vf)) (faig-f)) ((eq x (4vz)) (faig-z)) (t (faig-x)))))
Theorem:
(defthm 4v->faig-const-of-faig-const->4v (equal (4v->faig-const (faig-const->4v x)) (faig-const-fix x)))
Theorem:
(defthm faig-const->4v-of-4v->faig-const (equal (faig-const->4v (4v->faig-const x)) (4v-fix x)))
Theorem:
(defthm faig-const-<=-4v->faig-const (equal (faig-const-<= (4v->faig-const a) b) (4v-<= a (faig-const->4v b))))
Theorem:
(defthm 4v-<=-faig-const->4v (equal (4v-<= (faig-const->4v a) b) (faig-const-<= a (4v->faig-const b))))
Theorem:
(defthm 4v-equiv-implies-equal-4v->faig-const-1 (implies (4v-equiv x x-equiv) (equal (4v->faig-const x) (4v->faig-const x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm faig-const-p-of-4v->faig-const (faig-const-p (4v->faig-const x)))