Basic theorems about ACL2-number-listp, generated by std::deflist.
Theorem:
(defthm acl2-number-listp-of-cons (equal (acl2-number-listp (cons a x)) (and (acl2-numberp a) (acl2-number-listp x))) :rule-classes ((:rewrite)))
Theorem:
(defthm acl2-number-listp-of-cdr-when-acl2-number-listp (implies (acl2-number-listp (double-rewrite x)) (acl2-number-listp (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm acl2-number-listp-when-not-consp (implies (not (consp x)) (equal (acl2-number-listp x) (not x))) :rule-classes ((:rewrite)))
Theorem:
(defthm acl2-numberp-of-car-when-acl2-number-listp (implies (acl2-number-listp x) (iff (acl2-numberp (car x)) (consp x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-acl2-number-listp-compound-recognizer (implies (acl2-number-listp x) (true-listp x)) :rule-classes :compound-recognizer)
Theorem:
(defthm acl2-number-listp-of-list-fix (implies (acl2-number-listp x) (acl2-number-listp (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm acl2-number-listp-of-rev (equal (acl2-number-listp (rev x)) (acl2-number-listp (list-fix x))) :rule-classes ((:rewrite)))