Basic theorems about aig-partial-eval.
Theorem:
(defthm aig-eval-of-aig-partial-eval (equal (aig-eval (aig-partial-eval x al1) al2) (aig-eval x (append al1 al2))))
Theorem:
(defthm aig-equiv-implies-aig-equiv-aig-partial-eval-1 (implies (aig-equiv x x-equiv) (aig-equiv (aig-partial-eval x al) (aig-partial-eval x-equiv al))) :rule-classes (:congruence))
Theorem:
(defthm aig-partial-eval-aig-partial-eval (aig-equiv (aig-partial-eval (aig-partial-eval x al1) al2) (aig-partial-eval x (append al1 al2))))
Theorem:
(defthm alist-equiv-implies-equal-aig-partial-eval-2 (implies (alist-equiv env env-equiv) (equal (aig-partial-eval x env) (aig-partial-eval x env-equiv))) :rule-classes (:congruence))