A fixtype of true lists of (unsigned 8-bit) bytes of length 20.
Function:
(defun byte-list20-equiv$inline (x y) (declare (xargs :guard (and (byte-list20p x) (byte-list20p y)))) (equal (byte-list20-fix x) (byte-list20-fix y)))
Theorem:
(defthm byte-list20-equiv-is-an-equivalence (and (booleanp (byte-list20-equiv x y)) (byte-list20-equiv x x) (implies (byte-list20-equiv x y) (byte-list20-equiv y x)) (implies (and (byte-list20-equiv x y) (byte-list20-equiv y z)) (byte-list20-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm byte-list20-equiv-implies-equal-byte-list20-fix-1 (implies (byte-list20-equiv x x-equiv) (equal (byte-list20-fix x) (byte-list20-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm byte-list20-fix-under-byte-list20-equiv (byte-list20-equiv (byte-list20-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-byte-list20-fix-1-forward-to-byte-list20-equiv (implies (equal (byte-list20-fix x) y) (byte-list20-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-byte-list20-fix-2-forward-to-byte-list20-equiv (implies (equal x (byte-list20-fix y)) (byte-list20-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm byte-list20-equiv-of-byte-list20-fix-1-forward (implies (byte-list20-equiv (byte-list20-fix x) y) (byte-list20-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm byte-list20-equiv-of-byte-list20-fix-2-forward (implies (byte-list20-equiv x (byte-list20-fix y)) (byte-list20-equiv x y)) :rule-classes :forward-chaining)