Fixing function for dab-digit-listp.
(dab-digit-list-fix base x) → fixed-x
Function:
(defun dab-digit-list-fix (base x) (declare (xargs :guard (and (dab-basep base) (dab-digit-listp base x)))) (let ((__function__ 'dab-digit-list-fix)) (declare (ignorable __function__)) (mbe :logic (cond ((atom x) nil) (t (cons (dab-digit-fix base (car x)) (dab-digit-list-fix base (cdr x))))) :exec x)))
Theorem:
(defthm return-type-of-dab-digit-list-fix (b* ((fixed-x (dab-digit-list-fix base x))) (dab-digit-listp base fixed-x)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-dab-digit-list-fix (b* ((fixed-x (dab-digit-list-fix base x))) (nat-listp fixed-x)) :rule-classes :rewrite)
Theorem:
(defthm dab-digit-list-fix-of-true-list-fix (equal (dab-digit-list-fix base (true-list-fix digits)) (dab-digit-list-fix base digits)))
Theorem:
(defthm dab-digit-list-fix-when-dab-digit-listp (implies (dab-digit-listp base x) (equal (dab-digit-list-fix base x) x)))
Theorem:
(defthm dab-digit-list-fix-of-nil (equal (dab-digit-list-fix base nil) nil))
Theorem:
(defthm dab-digit-list-fix-of-cons (equal (dab-digit-list-fix base (cons x y)) (cons (dab-digit-fix base x) (dab-digit-list-fix base y))))
Theorem:
(defthm dab-digit-list-fix-of-append (equal (dab-digit-list-fix base (append x y)) (append (dab-digit-list-fix base x) (dab-digit-list-fix base y))))
Theorem:
(defthm len-of-dab-digit-list-fix (equal (len (dab-digit-list-fix base x)) (len x)))
Theorem:
(defthm consp-of-dab-digit-list-fix (equal (consp (dab-digit-list-fix base x)) (consp x)))
Theorem:
(defthm car-of-dab-digit-list-fix (implies (consp x) (equal (car (dab-digit-list-fix base x)) (dab-digit-fix base (car x)))))
Theorem:
(defthm cdr-of-dab-digit-list-fix (implies (consp x) (equal (cdr (dab-digit-list-fix base x)) (dab-digit-list-fix base (cdr x)))))
Theorem:
(defthm rev-of-dab-digit-list-fix (equal (rev (dab-digit-list-fix base x)) (dab-digit-list-fix base (rev x))))
Theorem:
(defthm nat-list-fix-of-dab-digit-list-fix (equal (nat-list-fix (dab-digit-list-fix base x)) (dab-digit-list-fix base x)))
Theorem:
(defthm dab-digit-list-fix-of-dab-base-fix-base (equal (dab-digit-list-fix (dab-base-fix base) x) (dab-digit-list-fix base x)))
Theorem:
(defthm dab-digit-list-fix-dab-base-equiv-congruence-on-base (implies (dab-base-equiv base base-equiv) (equal (dab-digit-list-fix base x) (dab-digit-list-fix base-equiv x))) :rule-classes :congruence)