Basic theorems about faig-alist-equiv.
Theorem:
(defthm faig-alist-equiv-implies-iff-hons-assoc-equal-2 (implies (faig-alist-equiv al al-equiv) (iff (hons-assoc-equal x al) (hons-assoc-equal x al-equiv))) :rule-classes (:congruence))
Theorem:
(defthm faig-alist-equiv-implies-faig-alist-equiv-append-1 (implies (faig-alist-equiv a a-equiv) (faig-alist-equiv (append a b) (append a-equiv b))) :rule-classes (:congruence))
Theorem:
(defthm faig-alist-equiv-implies-faig-alist-equiv-append-2 (implies (faig-alist-equiv b b-equiv) (faig-alist-equiv (append a b) (append a b-equiv))) :rule-classes (:congruence))