Lattice ordering for FAIG constants.
(faig-const-<= x y) → *
This is just the FAIG equivalent of 4v-<=.
Function:
(defun faig-const-<= (x y) (declare (xargs :guard t)) (let ((__function__ 'faig-const-<=)) (declare (ignorable __function__)) (let ((x (faig-const-fix x)) (y (faig-const-fix y))) (or (equal x y) (equal x (faig-x))))))
Theorem:
(defthm faig-const-equiv-implies-equal-faig-const-<=-1 (implies (faig-const-equiv x x-equiv) (equal (faig-const-<= x y) (faig-const-<= x-equiv y))) :rule-classes (:congruence))
Theorem:
(defthm faig-const-equiv-implies-equal-faig-const-<=-2 (implies (faig-const-equiv y y-equiv) (equal (faig-const-<= x y) (faig-const-<= x y-equiv))) :rule-classes (:congruence))