Basic theorems about faig-eval-alist.
Theorem:
(defthm faig-eval-alist-append (equal (faig-eval-alist (append a b) env) (append (faig-eval-alist a env) (faig-eval-alist b env))))
Theorem:
(defthm aig-env-equiv-implies-equal-faig-eval-alist-2 (implies (aig-env-equiv env env-equiv) (equal (faig-eval-alist x env) (faig-eval-alist x env-equiv))) :rule-classes (:congruence))
Theorem:
(defthm lookup-in-faig-eval-alist (equal (hons-assoc-equal k (faig-eval-alist x env)) (and (hons-assoc-equal k x) (cons k (faig-eval (cdr (hons-assoc-equal k x)) env)))))
Theorem:
(defthm faig-alist-equiv-implies-alist-equiv-faig-eval-alist-1 (implies (faig-alist-equiv x x-equiv) (alist-equiv (faig-eval-alist x env) (faig-eval-alist x-equiv env))) :rule-classes (:congruence))
Theorem:
(defthm alist-keys-faig-eval-alist (equal (alist-keys (faig-eval-alist al env)) (alist-keys al)))