Basic theorems about faig-partial-eval.
Theorem:
(defthm faig-eval-of-faig-partial-eval (equal (faig-eval (faig-partial-eval x al1) al2) (faig-eval x (append al1 al2))))
Theorem:
(defthm alist-equiv-implies-equal-faig-partial-eval-2 (implies (alist-equiv env env-equiv) (equal (faig-partial-eval x env) (faig-partial-eval x env-equiv))) :rule-classes (:congruence))
Theorem:
(defthm faig-equiv-implies-faig-equiv-faig-partial-eval-1 (implies (faig-equiv x x-equiv) (faig-equiv (faig-partial-eval x al) (faig-partial-eval x-equiv al))) :rule-classes (:congruence))
Theorem:
(defthm faig-partial-eval-faig-partial-eval (faig-equiv (faig-partial-eval (faig-partial-eval x al1) al2) (faig-partial-eval x (append al1 al2))))