Basic theorems about integer-range-listp, generated by std::deflist.
Theorem:
(defthm integer-range-listp-of-cons (equal (integer-range-listp lower upper (cons a x)) (and (integer-range-p lower upper a) (integer-range-listp lower upper x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-cdr-when-integer-range-listp (implies (integer-range-listp lower upper (double-rewrite x)) (integer-range-listp lower upper (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-when-not-consp (implies (not (consp x)) (equal (integer-range-listp lower upper x) (not x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-p-of-car-when-integer-range-listp (implies (integer-range-listp lower upper x) (iff (integer-range-p lower upper (car x)) (consp x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-integer-range-listp (implies (integer-range-listp lower upper x) (true-listp x)) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-list-fix (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-sfix (iff (integer-range-listp lower upper (set::sfix x)) (or (integer-range-listp lower upper x) (not (set::setp x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-insert (iff (integer-range-listp lower upper (set::insert a x)) (and (integer-range-listp lower upper (set::sfix x)) (integer-range-p lower upper a))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-delete (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (set::delete k x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-mergesort (iff (integer-range-listp lower upper (set::mergesort x)) (integer-range-listp lower upper (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-union (iff (integer-range-listp lower upper (set::union x y)) (and (integer-range-listp lower upper (set::sfix x)) (integer-range-listp lower upper (set::sfix y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-intersect-1 (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (set::intersect x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-intersect-2 (implies (integer-range-listp lower upper y) (integer-range-listp lower upper (set::intersect x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-difference (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (set::difference x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-duplicated-members (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (duplicated-members x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-rev (equal (integer-range-listp lower upper (rev x)) (integer-range-listp lower upper (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-append (equal (integer-range-listp lower upper (append a b)) (and (integer-range-listp lower upper (list-fix a)) (integer-range-listp lower upper b))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-rcons (iff (integer-range-listp lower upper (rcons a x)) (and (integer-range-p lower upper a) (integer-range-listp lower upper (list-fix x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-p-when-member-equal-of-integer-range-listp (and (implies (and (member-equal a x) (integer-range-listp lower upper x)) (integer-range-p lower upper a)) (implies (and (integer-range-listp lower upper x) (member-equal a x)) (integer-range-p lower upper a))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-when-subsetp-equal (and (implies (and (subsetp-equal x y) (integer-range-listp lower upper y)) (equal (integer-range-listp lower upper x) (true-listp x))) (implies (and (integer-range-listp lower upper y) (subsetp-equal x y)) (equal (integer-range-listp lower upper x) (true-listp x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-set-difference-equal (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (set-difference-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-intersection-equal-1 (implies (integer-range-listp lower upper (double-rewrite x)) (integer-range-listp lower upper (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-intersection-equal-2 (implies (integer-range-listp lower upper (double-rewrite y)) (integer-range-listp lower upper (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-union-equal (equal (integer-range-listp lower upper (union-equal x y)) (and (integer-range-listp lower upper (list-fix x)) (integer-range-listp lower upper (double-rewrite y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-take (implies (integer-range-listp lower upper (double-rewrite x)) (iff (integer-range-listp lower upper (take n x)) (or (integer-range-p lower upper nil) (<= (nfix n) (len x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-repeat (iff (integer-range-listp lower upper (repeat n x)) (or (integer-range-p lower upper x) (zp n))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-p-of-nth-when-integer-range-listp (implies (integer-range-listp lower upper x) (iff (integer-range-p lower upper (nth n x)) (< (nfix n) (len x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-update-nth (implies (integer-range-listp lower upper (double-rewrite x)) (iff (integer-range-listp lower upper (update-nth n y x)) (and (integer-range-p lower upper y) (or (<= (nfix n) (len x)) (integer-range-p lower upper nil))))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-butlast (implies (integer-range-listp lower upper (double-rewrite x)) (integer-range-listp lower upper (butlast x n))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-nthcdr (implies (integer-range-listp lower upper (double-rewrite x)) (integer-range-listp lower upper (nthcdr n x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-last (implies (integer-range-listp lower upper (double-rewrite x)) (integer-range-listp lower upper (last x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-remove (implies (integer-range-listp lower upper x) (integer-range-listp lower upper (remove a x))) :rule-classes ((:rewrite)))
Theorem:
(defthm integer-range-listp-of-revappend (equal (integer-range-listp lower upper (revappend x y)) (and (integer-range-listp lower upper (list-fix x)) (integer-range-listp lower upper y))) :rule-classes ((:rewrite)))