Recognizer for symbol-set.
(symbol-setp x) → *
Function:
(defun symbol-setp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (symbolp (car x)) (or (null (cdr x)) (and (consp (cdr x)) (fast-<< (car x) (cadr x)) (symbol-setp (cdr x)))))))
Theorem:
(defthm booleanp-ofsymbol-setp (booleanp (symbol-setp x)))
Theorem:
(defthm setp-when-symbol-setp (implies (symbol-setp x) (set::setp x)) :rule-classes (:rewrite))
Theorem:
(defthm symbolp-of-head-when-symbol-setp (implies (symbol-setp x) (symbolp (set::head x))))
Theorem:
(defthm symbol-setp-of-tail-when-symbol-setp (implies (symbol-setp x) (symbol-setp (set::tail x))))
Theorem:
(defthm symbol-setp-of-insert (equal (symbol-setp (set::insert a x)) (and (symbolp a) (symbol-setp (set::sfix x)))))
Theorem:
(defthm symbolp-when-in-symbol-setp-binds-free-x (implies (and (set::in a x) (symbol-setp x)) (symbolp a)))
Theorem:
(defthm symbol-setp-of-union (equal (symbol-setp (set::union x y)) (and (symbol-setp (set::sfix x)) (symbol-setp (set::sfix y)))))
Theorem:
(defthm symbol-setp-of-intersect (implies (and (symbol-setp x) (symbol-setp y)) (symbol-setp (set::intersect x y))))
Theorem:
(defthm symbol-setp-of-difference (implies (symbol-setp x) (symbol-setp (set::difference x y))))
Theorem:
(defthm symbol-setp-of-delete (implies (symbol-setp x) (symbol-setp (set::delete a x))))