(matchstatelist-indices-gte n x) → gte
Function:
(defun matchstatelist-indices-gte (n x) (declare (xargs :guard (and (natp n) (matchstatelist-p x)))) (let ((__function__ 'matchstatelist-indices-gte)) (declare (ignorable __function__)) (if (atom x) t (and (<= (lnfix n) (matchstate->index (car x))) (matchstatelist-indices-gte n (cdr x))))))
Theorem:
(defthm matchstatelist-indices-gte-implies-car (b* ((?gte (matchstatelist-indices-gte n x))) (implies (and gte (consp x)) (<= (nfix n) (matchstate->index (car x))))) :rule-classes :linear)
Theorem:
(defthm matchstatelist-indices-gte-implies-cdr (b* ((?gte (matchstatelist-indices-gte n x))) (implies gte (matchstatelist-indices-gte n (cdr x)))))
Theorem:
(defthm matchstatelist-indices-gte-of-append (iff (matchstatelist-indices-gte n (append x y)) (and (matchstatelist-indices-gte n x) (matchstatelist-indices-gte n y))))
Theorem:
(defthm matchstatelist-indices-gte-of-rev (iff (matchstatelist-indices-gte n (rev x)) (matchstatelist-indices-gte n x)))
Theorem:
(defthm matchstatelist-indices-gte-of-nil (matchstatelist-indices-gte n nil))
Theorem:
(defthm matchstatelist-indices-gte-of-remove (implies (matchstatelist-indices-gte n x) (matchstatelist-indices-gte n (remove k x))))
Theorem:
(defthm matchstatelist-indices-gte-of-undup (implies (matchstatelist-indices-gte n x) (matchstatelist-indices-gte n (undup x))))
Theorem:
(defthm matchstatelist-indices-gte-of-set-difference (implies (matchstatelist-indices-gte n x) (matchstatelist-indices-gte n (set-difference$ x y))))
Theorem:
(defthm matchstatelist-indices-gte-of-nfix-n (equal (matchstatelist-indices-gte (nfix n) x) (matchstatelist-indices-gte n x)))
Theorem:
(defthm matchstatelist-indices-gte-nat-equiv-congruence-on-n (implies (acl2::nat-equiv n n-equiv) (equal (matchstatelist-indices-gte n x) (matchstatelist-indices-gte n-equiv x))) :rule-classes :congruence)
Theorem:
(defthm matchstatelist-indices-gte-of-matchstatelist-fix-x (equal (matchstatelist-indices-gte n (matchstatelist-fix x)) (matchstatelist-indices-gte n x)))
Theorem:
(defthm matchstatelist-indices-gte-matchstatelist-equiv-congruence-on-x (implies (matchstatelist-equiv x x-equiv) (equal (matchstatelist-indices-gte n x) (matchstatelist-indices-gte n x-equiv))) :rule-classes :congruence)