Basic theorems about number-charlist-p, generated by deflist.
Theorem:
(defthm number-charlist-p-of-cons (equal (number-charlist-p (cons acl2::a acl2::x)) (and (number-char-p acl2::a) (number-charlist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-cdr-when-number-charlist-p (implies (number-charlist-p (double-rewrite acl2::x)) (number-charlist-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-when-not-consp (implies (not (consp acl2::x)) (number-charlist-p acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm number-char-p-of-car-when-number-charlist-p (implies (number-charlist-p acl2::x) (iff (number-char-p (car acl2::x)) (or (consp acl2::x) (number-char-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-append (equal (number-charlist-p (append acl2::a acl2::b)) (and (number-charlist-p acl2::a) (number-charlist-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-list-fix (equal (number-charlist-p (list-fix acl2::x)) (number-charlist-p acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-sfix (iff (number-charlist-p (set::sfix acl2::x)) (or (number-charlist-p acl2::x) (not (set::setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-insert (iff (number-charlist-p (set::insert acl2::a acl2::x)) (and (number-charlist-p (set::sfix acl2::x)) (number-char-p acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-delete (implies (number-charlist-p acl2::x) (number-charlist-p (set::delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-mergesort (iff (number-charlist-p (set::mergesort acl2::x)) (number-charlist-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-union (iff (number-charlist-p (set::union acl2::x acl2::y)) (and (number-charlist-p (set::sfix acl2::x)) (number-charlist-p (set::sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-intersect-1 (implies (number-charlist-p acl2::x) (number-charlist-p (set::intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-intersect-2 (implies (number-charlist-p acl2::y) (number-charlist-p (set::intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-difference (implies (number-charlist-p acl2::x) (number-charlist-p (set::difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-duplicated-members (implies (number-charlist-p acl2::x) (number-charlist-p (acl2::duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-rev (equal (number-charlist-p (acl2::rev acl2::x)) (number-charlist-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-rcons (iff (number-charlist-p (acl2::rcons acl2::a acl2::x)) (and (number-char-p acl2::a) (number-charlist-p (list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-char-p-when-member-equal-of-number-charlist-p (and (implies (and (member-equal acl2::a acl2::x) (number-charlist-p acl2::x)) (number-char-p acl2::a)) (implies (and (number-charlist-p acl2::x) (member-equal acl2::a acl2::x)) (number-char-p acl2::a))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (number-charlist-p acl2::y)) (number-charlist-p acl2::x)) (implies (and (number-charlist-p acl2::y) (subsetp-equal acl2::x acl2::y)) (number-charlist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-set-equiv-congruence (implies (acl2::set-equiv acl2::x acl2::y) (equal (number-charlist-p acl2::x) (number-charlist-p acl2::y))) :rule-classes :congruence)
Theorem:
(defthm number-charlist-p-of-set-difference-equal (implies (number-charlist-p acl2::x) (number-charlist-p (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-intersection-equal-1 (implies (number-charlist-p (double-rewrite acl2::x)) (number-charlist-p (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-intersection-equal-2 (implies (number-charlist-p (double-rewrite acl2::y)) (number-charlist-p (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-union-equal (equal (number-charlist-p (union-equal acl2::x acl2::y)) (and (number-charlist-p (list-fix acl2::x)) (number-charlist-p (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-take (implies (number-charlist-p (double-rewrite acl2::x)) (iff (number-charlist-p (take acl2::n acl2::x)) (or (number-char-p nil) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-repeat (iff (number-charlist-p (acl2::repeat acl2::n acl2::x)) (or (number-char-p acl2::x) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-char-p-of-nth-when-number-charlist-p (implies (and (number-charlist-p acl2::x) (< (nfix acl2::n) (len acl2::x))) (number-char-p (nth acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-update-nth (implies (number-charlist-p (double-rewrite acl2::x)) (iff (number-charlist-p (update-nth acl2::n acl2::y acl2::x)) (and (number-char-p acl2::y) (or (<= (nfix acl2::n) (len acl2::x)) (number-char-p nil))))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-butlast (implies (number-charlist-p (double-rewrite acl2::x)) (number-charlist-p (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-nthcdr (implies (number-charlist-p (double-rewrite acl2::x)) (number-charlist-p (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-last (implies (number-charlist-p (double-rewrite acl2::x)) (number-charlist-p (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-remove (implies (number-charlist-p acl2::x) (number-charlist-p (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm number-charlist-p-of-revappend (equal (number-charlist-p (revappend acl2::x acl2::y)) (and (number-charlist-p (list-fix acl2::x)) (number-charlist-p acl2::y))) :rule-classes ((:rewrite)))