Basic equivalence relation for mach-o-section-header structures.
Function:
(defun mach-o-section-header-equiv$inline (x y) (declare (xargs :guard (and (mach-o-section-header-p x) (mach-o-section-header-p y)))) (equal (mach-o-section-header-fix x) (mach-o-section-header-fix y)))
Theorem:
(defthm mach-o-section-header-equiv-is-an-equivalence (and (booleanp (mach-o-section-header-equiv x y)) (mach-o-section-header-equiv x x) (implies (mach-o-section-header-equiv x y) (mach-o-section-header-equiv y x)) (implies (and (mach-o-section-header-equiv x y) (mach-o-section-header-equiv y z)) (mach-o-section-header-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm mach-o-section-header-equiv-implies-equal-mach-o-section-header-fix-1 (implies (mach-o-section-header-equiv x x-equiv) (equal (mach-o-section-header-fix x) (mach-o-section-header-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm mach-o-section-header-fix-under-mach-o-section-header-equiv (mach-o-section-header-equiv (mach-o-section-header-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-mach-o-section-header-fix-1-forward-to-mach-o-section-header-equiv (implies (equal (mach-o-section-header-fix x) y) (mach-o-section-header-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-mach-o-section-header-fix-2-forward-to-mach-o-section-header-equiv (implies (equal x (mach-o-section-header-fix y)) (mach-o-section-header-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm mach-o-section-header-equiv-of-mach-o-section-header-fix-1-forward (implies (mach-o-section-header-equiv (mach-o-section-header-fix x) y) (mach-o-section-header-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm mach-o-section-header-equiv-of-mach-o-section-header-fix-2-forward (implies (mach-o-section-header-equiv x (mach-o-section-header-fix y)) (mach-o-section-header-equiv x y)) :rule-classes :forward-chaining)