Get the reloff field from a mach-o-section-header.
(mach-o-section-header->reloff x) → reloff
This is an ordinary field accessor created by defprod.
Function:
(defun mach-o-section-header->reloff$inline (x) (declare (xargs :guard (mach-o-section-header-p x))) (declare (xargs :guard t)) (let ((__function__ 'mach-o-section-header->reloff)) (declare (ignorable __function__)) (mbe :logic (b* ((x (and t x))) (nfix (cdr (std::da-nth 6 x)))) :exec (cdr (std::da-nth 6 x)))))
Theorem:
(defthm natp-of-mach-o-section-header->reloff (b* ((reloff (mach-o-section-header->reloff$inline x))) (natp reloff)) :rule-classes :rewrite)
Theorem:
(defthm mach-o-section-header->reloff$inline-of-mach-o-section-header-fix-x (equal (mach-o-section-header->reloff$inline (mach-o-section-header-fix x)) (mach-o-section-header->reloff$inline x)))
Theorem:
(defthm mach-o-section-header->reloff$inline-mach-o-section-header-equiv-congruence-on-x (implies (mach-o-section-header-equiv x x-equiv) (equal (mach-o-section-header->reloff$inline x) (mach-o-section-header->reloff$inline x-equiv))) :rule-classes :congruence)