Update the |EXLD|::|NAME| field of a elf64_sym bit structure.
(!elf64_sym->name name x) → new-x
Function:
(defun !elf64_sym->name (name x) (declare (xargs :guard (and (elf_bits32-p name) (elf64_sym-p x)))) (mbe :logic (b* ((name (mbe :logic (elf_bits32-fix name) :exec name)) (x (elf64_sym-fix x))) (part-install name x :width 32 :low 0)) :exec (the (unsigned-byte 192) (logior (the (unsigned-byte 192) (logand (the (unsigned-byte 192) x) (the (signed-byte 33) -4294967296))) (the (unsigned-byte 32) name)))))
Theorem:
(defthm elf64_sym-p-of-!elf64_sym->name (b* ((new-x (!elf64_sym->name name x))) (elf64_sym-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !elf64_sym->name-of-elf_bits32-fix-name (equal (!elf64_sym->name (elf_bits32-fix name) x) (!elf64_sym->name name x)))
Theorem:
(defthm !elf64_sym->name-elf_bits32-equiv-congruence-on-name (implies (elf_bits32-equiv name name-equiv) (equal (!elf64_sym->name name x) (!elf64_sym->name name-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !elf64_sym->name-of-elf64_sym-fix-x (equal (!elf64_sym->name name (elf64_sym-fix x)) (!elf64_sym->name name x)))
Theorem:
(defthm !elf64_sym->name-elf64_sym-equiv-congruence-on-x (implies (elf64_sym-equiv x x-equiv) (equal (!elf64_sym->name name x) (!elf64_sym->name name x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !elf64_sym->name-is-elf64_sym (equal (!elf64_sym->name name x) (change-elf64_sym x :name name)))
Theorem:
(defthm elf64_sym->name-of-!elf64_sym->name (b* ((?new-x (!elf64_sym->name name x))) (equal (elf64_sym->name new-x) (elf_bits32-fix name))))
Theorem:
(defthm !elf64_sym->name-equiv-under-mask (b* ((?new-x (!elf64_sym->name name x))) (elf64_sym-equiv-under-mask new-x x -4294967296)))