(Single-precision) floating point e^x.
(er-float-e^x a) is a lispfloat wrapper function.
In the logic this function does not have a definition, but
its ACL2::constraints say it returns
Theorem:
(defthm er-float-e^x-mvtypes-0 (maybe-stringp (mv-nth 0 (er-float-e^x a))) :rule-classes :type-prescription)
Theorem:
(defthm er-float-e^x-mvtypes-1 (rationalp (mv-nth 1 (er-float-e^x a))) :rule-classes :type-prescription)
Theorem:
(defthm er-float-e^x-of-rfix-a (equal (er-float-e^x (rfix a)) (er-float-e^x a)))
Theorem:
(defthm er-float-e^x-rational-equiv-congruence-on-a (implies (acl2::rational-equiv a a-equiv) (equal (er-float-e^x a) (er-float-e^x a-equiv))) :rule-classes :congruence)