(cst-list-elem-matchp$ abnf::trees abnf::elem) → abnf::yes/no
Function:
(defun cst-list-elem-matchp$ (abnf::trees abnf::elem) (declare (xargs :guard (and (abnf::tree-listp abnf::trees) (abnf::elementp abnf::elem)))) (let ((__function__ 'cst-list-elem-matchp$)) (declare (ignorable __function__)) (and (abnf::tree-list-terminatedp abnf::trees) (abnf::tree-list-match-element-p abnf::trees abnf::elem *grammar*))))
Theorem:
(defthm booleanp-of-cst-list-elem-matchp$ (b* ((abnf::yes/no (cst-list-elem-matchp$ abnf::trees abnf::elem))) (booleanp abnf::yes/no)) :rule-classes :rewrite)
Theorem:
(defthm cst-list-elem-matchp$-of-tree-list-fix-trees (equal (cst-list-elem-matchp$ (abnf::tree-list-fix abnf::trees) abnf::elem) (cst-list-elem-matchp$ abnf::trees abnf::elem)))
Theorem:
(defthm cst-list-elem-matchp$-tree-list-equiv-congruence-on-trees (implies (abnf::tree-list-equiv abnf::trees trees-equiv) (equal (cst-list-elem-matchp$ abnf::trees abnf::elem) (cst-list-elem-matchp$ trees-equiv abnf::elem))) :rule-classes :congruence)
Theorem:
(defthm cst-list-elem-matchp$-of-element-fix-elem (equal (cst-list-elem-matchp$ abnf::trees (abnf::element-fix abnf::elem)) (cst-list-elem-matchp$ abnf::trees abnf::elem)))
Theorem:
(defthm cst-list-elem-matchp$-element-equiv-congruence-on-elem (implies (abnf::element-equiv abnf::elem elem-equiv) (equal (cst-list-elem-matchp$ abnf::trees abnf::elem) (cst-list-elem-matchp$ abnf::trees elem-equiv))) :rule-classes :congruence)