(cst-list-list-alt-matchp$ abnf::treess abnf::alt) → abnf::yes/no
Function:
(defun cst-list-list-alt-matchp$ (abnf::treess abnf::alt) (declare (xargs :guard (and (abnf::tree-list-listp abnf::treess) (abnf::alternationp abnf::alt)))) (let ((__function__ 'cst-list-list-alt-matchp$)) (declare (ignorable __function__)) (and (abnf::tree-list-list-terminatedp abnf::treess) (abnf::tree-list-list-match-alternation-p abnf::treess abnf::alt *grammar*))))
Theorem:
(defthm booleanp-of-cst-list-list-alt-matchp$ (b* ((abnf::yes/no (cst-list-list-alt-matchp$ abnf::treess abnf::alt))) (booleanp abnf::yes/no)) :rule-classes :rewrite)
Theorem:
(defthm cst-list-list-alt-matchp$-of-tree-list-list-fix-treess (equal (cst-list-list-alt-matchp$ (abnf::tree-list-list-fix abnf::treess) abnf::alt) (cst-list-list-alt-matchp$ abnf::treess abnf::alt)))
Theorem:
(defthm cst-list-list-alt-matchp$-tree-list-list-equiv-congruence-on-treess (implies (abnf::tree-list-list-equiv abnf::treess treess-equiv) (equal (cst-list-list-alt-matchp$ abnf::treess abnf::alt) (cst-list-list-alt-matchp$ treess-equiv abnf::alt))) :rule-classes :congruence)
Theorem:
(defthm cst-list-list-alt-matchp$-of-alternation-fix-alt (equal (cst-list-list-alt-matchp$ abnf::treess (abnf::alternation-fix abnf::alt)) (cst-list-list-alt-matchp$ abnf::treess abnf::alt)))
Theorem:
(defthm cst-list-list-alt-matchp$-alternation-equiv-congruence-on-alt (implies (abnf::alternation-equiv abnf::alt alt-equiv) (equal (cst-list-list-alt-matchp$ abnf::treess abnf::alt) (cst-list-list-alt-matchp$ abnf::treess alt-equiv))) :rule-classes :congruence)