(cst-list-list-conc-matchp$ abnf::treess abnf::conc) → abnf::yes/no
Function:
(defun cst-list-list-conc-matchp$ (abnf::treess abnf::conc) (declare (xargs :guard (and (abnf::tree-list-listp abnf::treess) (abnf::concatenationp abnf::conc)))) (let ((__function__ 'cst-list-list-conc-matchp$)) (declare (ignorable __function__)) (and (abnf::tree-list-list-terminatedp abnf::treess) (abnf::tree-list-list-match-concatenation-p abnf::treess abnf::conc *grammar*))))
Theorem:
(defthm booleanp-of-cst-list-list-conc-matchp$ (b* ((abnf::yes/no (cst-list-list-conc-matchp$ abnf::treess abnf::conc))) (booleanp abnf::yes/no)) :rule-classes :rewrite)
Theorem:
(defthm cst-list-list-conc-matchp$-of-tree-list-list-fix-treess (equal (cst-list-list-conc-matchp$ (abnf::tree-list-list-fix abnf::treess) abnf::conc) (cst-list-list-conc-matchp$ abnf::treess abnf::conc)))
Theorem:
(defthm cst-list-list-conc-matchp$-tree-list-list-equiv-congruence-on-treess (implies (abnf::tree-list-list-equiv abnf::treess treess-equiv) (equal (cst-list-list-conc-matchp$ abnf::treess abnf::conc) (cst-list-list-conc-matchp$ treess-equiv abnf::conc))) :rule-classes :congruence)
Theorem:
(defthm cst-list-list-conc-matchp$-of-concatenation-fix-conc (equal (cst-list-list-conc-matchp$ abnf::treess (abnf::concatenation-fix abnf::conc)) (cst-list-list-conc-matchp$ abnf::treess abnf::conc)))
Theorem:
(defthm cst-list-list-conc-matchp$-concatenation-equiv-congruence-on-conc (implies (abnf::concatenation-equiv abnf::conc conc-equiv) (equal (cst-list-list-conc-matchp$ abnf::treess abnf::conc) (cst-list-list-conc-matchp$ abnf::treess conc-equiv))) :rule-classes :congruence)