(a4veclist->aiglist x) → aigs
Function:
(defun a4veclist->aiglist (x) (declare (xargs :guard (a4veclist-p x))) (let ((__function__ 'a4veclist->aiglist)) (declare (ignorable __function__)) (if (atom x) nil (append (a4vec->aiglist (car x)) (a4veclist->aiglist (cdr x))))))
Theorem:
(defthm true-listp-of-a4veclist->aiglist (b* ((aigs (a4veclist->aiglist x))) (true-listp aigs)) :rule-classes :type-prescription)
Theorem:
(defthm a4veclist->aiglist-of-a4veclist-fix-x (equal (a4veclist->aiglist (a4veclist-fix x)) (a4veclist->aiglist x)))
Theorem:
(defthm a4veclist->aiglist-a4veclist-equiv-congruence-on-x (implies (a4veclist-equiv x x-equiv) (equal (a4veclist->aiglist x) (a4veclist->aiglist x-equiv))) :rule-classes :congruence)