(delay-svarlist->delays x) → delays
Function:
(defun delay-svarlist->delays (x) (declare (xargs :guard (svarlist-p x))) (let ((__function__ 'delay-svarlist->delays)) (declare (ignorable __function__)) (b* (((when (atom x)) nil) (rest (delay-svarlist->delays (cdr x))) (delays1 (delay-svar->delays (car x)))) (append-without-guard delays1 rest))))
Theorem:
(defthm svar-map-p-of-delay-svarlist->delays (b* ((delays (delay-svarlist->delays x))) (svar-map-p delays)) :rule-classes :rewrite)
Theorem:
(defthm vars-of-delay-svarlist->delays (b* ((?delays (delay-svarlist->delays x))) (implies (svarlist-addr-p x) (svarlist-addr-p (svar-map-vars delays)))))
Theorem:
(defthm vars-of-delay-svarlist->delays-alist-vals (b* ((?delays (delay-svarlist->delays x))) (implies (svarlist-addr-p x) (svarlist-addr-p (alist-vals delays)))))
Theorem:
(defthm vars-of-delay-svarlist->delays-alist-keys (b* ((?delays (delay-svarlist->delays x))) (implies (svarlist-addr-p x) (svarlist-addr-p (alist-keys delays)))))
Theorem:
(defthm delay-svarlist->delays-of-svarlist-fix-x (equal (delay-svarlist->delays (svarlist-fix x)) (delay-svarlist->delays x)))
Theorem:
(defthm delay-svarlist->delays-svarlist-equiv-congruence-on-x (implies (svarlist-equiv x x-equiv) (equal (delay-svarlist->delays x) (delay-svarlist->delays x-equiv))) :rule-classes :congruence)