(elab-modlist-norm x) → *
Function:
(defun elab-modlist-norm (x) (declare (xargs :guard (elab-modlist-p x))) (let ((__function__ 'elab-modlist-norm)) (declare (ignorable __function__)) (if (atom x) nil (let ((rest (elab-modlist-norm (cdr x)))) (if (and (not rest) (elab-mod$a-equiv (car x) nil)) nil (cons (elab-mod$a-fix (car x)) rest))))))
Theorem:
(defthm elab-modlist-norm-of-elab-modlist-fix-x (equal (elab-modlist-norm (elab-modlist-fix x)) (elab-modlist-norm x)))
Theorem:
(defthm elab-modlist-norm-elab-modlist-equiv-congruence-on-x (implies (elab-modlist-equiv x x-equiv) (equal (elab-modlist-norm x) (elab-modlist-norm x-equiv))) :rule-classes :congruence)
Theorem:
(defthm elab-modlist-norm-idempotent (equal (elab-modlist-norm (elab-modlist-norm x)) (elab-modlist-norm x)))
Function:
(defun elab-modlist-normp (x) (declare (xargs :guard t)) (let ((__function__ 'elab-modlist-normp)) (declare (ignorable __function__)) (equal (elab-modlist-norm x) x)))
Function:
(defun elab-modlist-norm-equiv (x y) (declare (xargs :non-executable t)) (prog2$ (acl2::throw-nonexec-error 'elab-modlist-norm-equiv (list x y)) (equal (elab-modlist-norm x) (elab-modlist-norm y))))
Theorem:
(defthm elab-modlist-norm-equiv-is-an-equivalence (and (booleanp (elab-modlist-norm-equiv x y)) (elab-modlist-norm-equiv x x) (implies (elab-modlist-norm-equiv x y) (elab-modlist-norm-equiv y x)) (implies (and (elab-modlist-norm-equiv x y) (elab-modlist-norm-equiv y z)) (elab-modlist-norm-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm elab-modlist-norm-equiv-implies-equal-elab-modlist-norm-1 (implies (elab-modlist-norm-equiv x x-equiv) (equal (elab-modlist-norm x) (elab-modlist-norm x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm elab-modlist-norm-under-elab-modlist-norm-equiv (elab-modlist-norm-equiv (elab-modlist-norm x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-elab-modlist-norm-1-forward-to-elab-modlist-norm-equiv (implies (equal (elab-modlist-norm x) y) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-elab-modlist-norm-2-forward-to-elab-modlist-norm-equiv (implies (equal x (elab-modlist-norm y)) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-norm-equiv-of-elab-modlist-norm-1-forward (implies (elab-modlist-norm-equiv (elab-modlist-norm x) y) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-norm-equiv-of-elab-modlist-norm-2-forward (implies (elab-modlist-norm-equiv x (elab-modlist-norm y)) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-fix-of-elab-modlist-norm (equal (elab-modlist-fix (elab-modlist-norm x)) (elab-modlist-norm x)))
Theorem:
(defthm elab-modlist-equiv-refines-elab-modlist-norm-equiv (implies (elab-modlist-equiv x y) (elab-modlist-norm-equiv x y)) :rule-classes (:refinement))
Theorem:
(defthm acl2::nth-of-elab-modlist-norm-x-under-elab-mod$a-equiv (elab-mod$a-equiv (nth n (elab-modlist-norm x)) (nth n x)))
Theorem:
(defthm acl2::nth-elab-modlist-norm-equiv-congruence-on-x-under-elab-mod$a-equiv (implies (elab-modlist-norm-equiv x acl2::x-equiv) (elab-mod$a-equiv (nth n x) (nth n acl2::x-equiv))) :rule-classes :congruence)
Theorem:
(defthm acl2::update-nth-of-elab-modlist-norm-x-under-elab-modlist-norm-equiv (elab-modlist-norm-equiv (update-nth n v (elab-modlist-norm x)) (update-nth n v x)))
Theorem:
(defthm acl2::update-nth-elab-modlist-norm-equiv-congruence-on-x-under-elab-modlist-norm-equiv (implies (elab-modlist-norm-equiv x acl2::x-equiv) (elab-modlist-norm-equiv (update-nth n v x) (update-nth n v acl2::x-equiv))) :rule-classes :congruence)
Theorem:
(defthm acl2::update-nth-of-elab-mod$a-fix-v-under-elab-modlist-norm-equiv (elab-modlist-norm-equiv (update-nth n (elab-mod$a-fix v) x) (update-nth n v x)))
Theorem:
(defthm acl2::update-nth-elab-mod$a-equiv-congruence-on-v-under-elab-modlist-norm-equiv (implies (elab-mod$a-equiv v acl2::v-equiv) (elab-modlist-norm-equiv (update-nth n v x) (update-nth n acl2::v-equiv x))) :rule-classes :congruence)