(elab-modlist-normp x) → *
Function:
(defun elab-modlist-normp (x) (declare (xargs :guard t)) (let ((__function__ 'elab-modlist-normp)) (declare (ignorable __function__)) (equal (elab-modlist-norm x) x)))
Function:
(defun elab-modlist-norm-equiv (x y) (declare (xargs :non-executable t)) (prog2$ (acl2::throw-nonexec-error 'elab-modlist-norm-equiv (list x y)) (equal (elab-modlist-norm x) (elab-modlist-norm y))))
Theorem:
(defthm elab-modlist-norm-equiv-is-an-equivalence (and (booleanp (elab-modlist-norm-equiv x y)) (elab-modlist-norm-equiv x x) (implies (elab-modlist-norm-equiv x y) (elab-modlist-norm-equiv y x)) (implies (and (elab-modlist-norm-equiv x y) (elab-modlist-norm-equiv y z)) (elab-modlist-norm-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm elab-modlist-norm-equiv-implies-equal-elab-modlist-norm-1 (implies (elab-modlist-norm-equiv x x-equiv) (equal (elab-modlist-norm x) (elab-modlist-norm x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm elab-modlist-norm-under-elab-modlist-norm-equiv (elab-modlist-norm-equiv (elab-modlist-norm x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-elab-modlist-norm-1-forward-to-elab-modlist-norm-equiv (implies (equal (elab-modlist-norm x) y) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-elab-modlist-norm-2-forward-to-elab-modlist-norm-equiv (implies (equal x (elab-modlist-norm y)) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-norm-equiv-of-elab-modlist-norm-1-forward (implies (elab-modlist-norm-equiv (elab-modlist-norm x) y) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-norm-equiv-of-elab-modlist-norm-2-forward (implies (elab-modlist-norm-equiv x (elab-modlist-norm y)) (elab-modlist-norm-equiv x y)) :rule-classes :forward-chaining)