(elab-mod$a-wiretablei idx elab-mod$a) → wire
Function:
(defun elab-mod$a-wiretablei (idx elab-mod$a) (declare (xargs :guard (and (natp idx) (elab-mod$ap elab-mod$a)))) (declare (xargs :guard (< idx (elab-mod$a-nwires elab-mod$a)))) (let ((__function__ 'elab-mod$a-wiretablei)) (declare (ignorable __function__)) (wire-fix (nth idx (g :wires (elab-mod$a-fix elab-mod$a))))))
Theorem:
(defthm wire-p-of-elab-mod$a-wiretablei (b* ((wire (elab-mod$a-wiretablei idx elab-mod$a))) (wire-p wire)) :rule-classes :rewrite)
Theorem:
(defthm elab-mod$a-wiretablei-of-nfix-idx (equal (elab-mod$a-wiretablei (nfix idx) elab-mod$a) (elab-mod$a-wiretablei idx elab-mod$a)))
Theorem:
(defthm elab-mod$a-wiretablei-nat-equiv-congruence-on-idx (implies (nat-equiv idx idx-equiv) (equal (elab-mod$a-wiretablei idx elab-mod$a) (elab-mod$a-wiretablei idx-equiv elab-mod$a))) :rule-classes :congruence)
Theorem:
(defthm elab-mod$a-wiretablei-of-elab-mod$a-fix-elab-mod$a (equal (elab-mod$a-wiretablei idx (elab-mod$a-fix elab-mod$a)) (elab-mod$a-wiretablei idx elab-mod$a)))
Theorem:
(defthm elab-mod$a-wiretablei-elab-mod$a-equiv-congruence-on-elab-mod$a (implies (elab-mod$a-equiv elab-mod$a elab-mod$a-equiv) (equal (elab-mod$a-wiretablei idx elab-mod$a) (elab-mod$a-wiretablei idx elab-mod$a-equiv))) :rule-classes :congruence)