(elab-mod$a->inst-modidx idx elab-mod$a) → *
Function:
(defun elab-mod$a->inst-modidx (idx elab-mod$a) (declare (xargs :guard (and (natp idx) (elab-mod$ap elab-mod$a)))) (declare (xargs :guard (< idx (elab-mod$a-ninsts elab-mod$a)))) (let ((__function__ 'elab-mod$a->inst-modidx)) (declare (ignorable __function__)) (nfix (nth *elab-modinst$c->modidx* (nth idx (g :insts (elab-mod$a-fix elab-mod$a)))))))
Theorem:
(defthm elab-mod$a->inst-modidx-of-nfix-idx (equal (elab-mod$a->inst-modidx (nfix idx) elab-mod$a) (elab-mod$a->inst-modidx idx elab-mod$a)))
Theorem:
(defthm elab-mod$a->inst-modidx-nat-equiv-congruence-on-idx (implies (nat-equiv idx idx-equiv) (equal (elab-mod$a->inst-modidx idx elab-mod$a) (elab-mod$a->inst-modidx idx-equiv elab-mod$a))) :rule-classes :congruence)
Theorem:
(defthm elab-mod$a->inst-modidx-of-elab-mod$a-fix-elab-mod$a (equal (elab-mod$a->inst-modidx idx (elab-mod$a-fix elab-mod$a)) (elab-mod$a->inst-modidx idx elab-mod$a)))
Theorem:
(defthm elab-mod$a->inst-modidx-elab-mod$a-equiv-congruence-on-elab-mod$a (implies (elab-mod$a-equiv elab-mod$a elab-mod$a-equiv) (equal (elab-mod$a->inst-modidx idx elab-mod$a) (elab-mod$a->inst-modidx idx elab-mod$a-equiv))) :rule-classes :congruence)